Skip to main content

Cerebral Cortex Extraction Methods Based on a Priori Knowledge for T1-Weighted MRI Images

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2166))

Included in the following conference series:

  • 233 Accesses

Abstract

Cerebral Cortex Extraction (CCE) plays a significant role in clinical applications such as pre-surgical planning and tumor segmentation. However, designing an efficient CCE technique is still a challenging task. In this work, we propose two efficient methods for CCE from T1-weighted MRI images. The first method (named CCE-AK) is divided in two phases: Pretreatment phase and CCE phase. Indeed, the input image is firstly filtered by a Gaussian filter to smooth the image and reduce noise. Thereafter, we apply the anisotropic diffusion to improve the texture quality on the filtered image. Thus, a binary image is obtained after the integration of a priori knowledge and the thresholding steep using the Otsu's method to simplify treatment and eliminate non-brain portions. After that, we start the second phase by eroding the image via a structuring element to eliminate the outer brain parts. In order to extract the Cerebral Cortex (CC), we look for the Largest Connected Component (LCC) in the eroded image. Finally, we use the dilation operation to preserve the totality of the CC region. However, the LCC concept failed in few slices to identify the CC correctly. To address this issue, we introduce a second method (CCE2), which makes use of information in the adjacent slices. To assess the performance, experiments are conducted on different MRI datasets collected from the Surgical Planning Laboratory (SPL). The proposed methods achieve better results in both visual effects and objective criteria than three popular methods (SPM, BET and BSE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, C., et al.: Artificial intelligence in multiparametric magnetic resonance imaging: a review. Med. Phys. 49(10), e1024–e1054 (2022)

    Article  Google Scholar 

  2. Hu, J., et al.: Diagnostic performance of magnetic resonance imaging–based machine learning in Alzheimer’s disease detection: a meta-analysis. Neuroradiology 65(3), 513–527 (2023)

    Article  Google Scholar 

  3. Qin, C., Li, B., Han, B.: Fast brain tumor detection using adaptive stochastic gradient descent on shared-memory parallel environment. Eng. Appl. Artif. Intell. 120, 105816 (2023)

    Article  Google Scholar 

  4. Ranjbarzadeh, R., et al.: Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools. Comput. Biol. Med. 152, 106405 (2023)

    Article  Google Scholar 

  5. Amin, J., et al.: Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell. Syst. 8(4), 3161–3183 (2022)

    Article  Google Scholar 

  6. Balasubramanian, S., et al.: RF-ShCNN: a combination of two deep models for tumor detection in brain using MRI. Biomed. Signal Process. Control 88, 105656 (2024)

    Article  Google Scholar 

  7. Kumar, A.: Study and analysis of different segmentation methods for brain tumor MRI application. Multimedia Tools Appl. 82(5), 7117–7139 (2023)

    Article  Google Scholar 

  8. Ouerghi, H., Mourali, O., Zagrouba, E.: Glioma classification via MR images radiomics analysis. Vis. Comput., 1–15 (2022)

    Google Scholar 

  9. Premalatha, R., Dhanalakshmi, P.: Robust neutrosophic fusion design for magnetic resonance (MR) brain images. Biomedical Sig. Process. Control 84, 104824 (2023)

    Article  Google Scholar 

  10. Shattuck, D.W., et al.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)

    Article  Google Scholar 

  11. Penny, W.D., et al., Statistical parametric mapping: the analysis of functional brain images. Elsevier (2011)

    Google Scholar 

  12. Tarhini, G.M. and R. Shbib, Detection of brain tumor in MRI images using watershed and threshold-based segmentation. nternational Journal of Signal Processing Systems, 2020. 8(1): p. 19–25

    Google Scholar 

  13. Ranjbar, S., et al.: Robust automatic whole brain extraction on magnetic resonance imaging of brain tumor patients using dense-Vnet. arXiv preprint arXiv:02627 (2020)

    Google Scholar 

  14. Ullah, Z., Lee, S.-H., An, D.: Histogram equalization based enhancement and mr brain image skull stripping using mathematical morphology. Int. J. Adv. Comput. Sci. Appl. 11(3), 569–577 (2020)

    Google Scholar 

  15. Whi, W., et al.: Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping. EJNMMI Phys. 8(1), 1–10 (2021)

    Article  Google Scholar 

  16. Duarte, K.T.N., et al.: Brain extraction in multiple T1-weighted magnetic resonance imaging slices using digital image processing techniques. IEEE Lat. Am. Trans. 20(5), 831–838 (2022)

    Article  Google Scholar 

  17. Di, X., Biswal, B.B.: A functional MRI pre-processing and quality control protocol based on statistical parametric mapping (SPM) and MATLAB. Front. Neuroimaging 1, 1070151 (2023)

    Article  Google Scholar 

  18. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  19. Jenkinson, M., Pechaud, M., Smith, S.: BET2: MR-based estimation of brain, skull and scalp surfaces. In: Eleventh Annual Meeting of the Organization for Human Brain Mapping. Toronto (2005)

    Google Scholar 

  20. Galdames, F.J., Jaillet, F., Perez, C.A.: An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J. Neurosci. Methods 206(2), 103–119 (2012)

    Article  Google Scholar 

  21. Leung, K.K., et al.: Brain MAPS: an automated, accurate and robust brain extraction technique using a template library. Neuroimage 55(3), 1091–1108 (2011)

    Article  Google Scholar 

  22. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  23. Eskildsen, S.F., et al.: BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59(3), 2362–2373 (2012)

    Article  Google Scholar 

  24. Carass, A., et al.: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. Neuroimage 56(4), 1982–1992 (2011)

    Article  Google Scholar 

  25. Roy, S., Butman, J.A., Pham, D.L.: Robust skull stripping using multiple MR image contrasts insensitive to pathology. Neuroimage 146, 132–147 (2017)

    Article  Google Scholar 

  26. Iglesias, J.E., et al.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging 30(9), 1617–1634 (2011)

    Article  Google Scholar 

  27. Mahalaxmi, G., et al.: A comparison and survey on brain tumour detection techniques using MRI images. Curr. Signal Transduct. Ther. 18(1), 14–23 (2023)

    Article  Google Scholar 

  28. Gull, S., Akbar, S.: Artificial intelligence in brain tumor detection through MRI scans: advancements and challenges. Artif. Intell. Internet of Things, 241–276 (2021)

    Google Scholar 

  29. Sagheer, S.V.M., George, S.N.: A review on medical image denoising algorithms. Biomedical Signal Process. Control 61, 102036 (2020)

    Article  Google Scholar 

  30. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  31. Sharma, S.R., et al.: Hybrid multilevel thresholding image segmentation approach for brain MRI. Diagnostics 13(5), 925 (2023)

    Article  Google Scholar 

  32. Jardim, S., António, J., Mora, C.: Image thresholding approaches for medical image segmentation-short literature review. Procedia Comput. Sci. 219, 1485–1492 (2023)

    Article  Google Scholar 

  33. Kumar, V.V., Prince, P.G.K.: Magnitude normalized and OTSU intensity based brain tumor detection using magnetic resonance images. IETE J. Res. 69(8), 5079–5089 (2023)

    Article  Google Scholar 

  34. Shamir, R.R., et al.: Continuous dice coefficient: a method for evaluating probabilistic segmentations. arXiv preprint arXiv:11031 (2019)

    Google Scholar 

  35. Somasundaram, K., Kalaiselvi, T.: Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images. Comput. Boil. Med. 40(10), 811–822 (2010)

    Article  Google Scholar 

  36. Wang, Z., Wang, E., Zhu, Y.: Image segmentation evaluation: a survey of methods. Artif. Intell. Rev.Intell. Rev. 53, 5637–5674 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Ouerghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouerghi, H., Mourali, O., Zagrouba, E. (2024). Cerebral Cortex Extraction Methods Based on a Priori Knowledge for T1-Weighted MRI Images. In: Nguyen, NT., et al. Advances in Computational Collective Intelligence. ICCCI 2024. Communications in Computer and Information Science, vol 2166. Springer, Cham. https://doi.org/10.1007/978-3-031-70259-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70259-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70258-7

  • Online ISBN: 978-3-031-70259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics