Skip to main content

Principles for the Secure Exchange of Sensitive Data Across Classified Networks: A Data-Centric Approach

  • Conference paper
  • First Online:
Electronic Government (EGOV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14841))

Included in the following conference series:

  • 869 Accesses

Abstract

The internet of things, social media and other technological developments have a created a situation in which more and more sensitive data is being exchanged between government and semi-government organizations. However, sharing confidential data presents complex challenges that are not only confined to technological factors but are also inclusive of social aspects such as data governance. This article therefore promotes a data-centric approach to data exchange, deriving principles for the secure exchange of government data across confidential networks. Due to the potential advantages that data-driven decision-making brings to government organizations, significant pressure is often placed on government organizations to publish and exchange classified data or privacy sensitive data with cooperating government organizations or even with allied countries across classified networks. For example, it is often difficult to assess the confidentiality of raw data. Furthermore, data leaks and ransoming of data have become a common occurrence which often have wide-ranging and unforeseen consequences. More and more, government organizations are looking beyond traditional security methods towards a more data-centric approach, whereby data is positioned at the foundation of decision-making and operations regarding risk management. This approach acts as a means to gain control over the secure exchange of confidential and sensitive data so that the right people continue to have access to the right data at the right time whilst simultaneously ensuring that the wrong people do not gain access to confidential data. However, secure data exchange viewed from a data-centric perspective has been given little attention to date. This article outlines a systematic review of literature on data-centric approaches to data exchange. The findings show that along with the technical aspects of data exchange, aspects such as data governance as well as the management of data as a product are also of importance to the secure and trusted exchange of sensitive data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman, D.W., Hughes, A.A., Perry, W.D.: The role of data governance to relieve information sharing impairments in the federal government. In: 2009 WRI World Congress on Computer Science and Information Engineering, pp. 267–271 (2009)

    Google Scholar 

  2. Scully, T.: The cyber threat, trophy information and the fortress mentality. J. Bus. Contin. Emer. Plan. 5(3), 195–207 (2011)

    Article  Google Scholar 

  3. Zeiringer, J.P., Thalmann, S.: Knowledge sharing and protection in data-centric collaborations: an exploratory study. Knowl. Manage. Res. Pract. 20, 436–448 (2022). https://doi.org/10.1080/14778238.2021.1978886

    Article  Google Scholar 

  4. De Mello, L., Jalles, J.T.: The global crisis and intergovernmental relations: centralization versus decentralization 10 years on. Reg. Stud. 54, 942–957 (2020). https://doi.org/10.1080/00343404.2019.1645326

    Article  Google Scholar 

  5. Brannsten, M.R., Johnsen, F.T., Bloebaum, T.H., Lund, K.: Toward federated mission networking in the tactical domain. IEEE Commun. Mag. 53, 52–58 (2015)

    Article  Google Scholar 

  6. Wrona, K.: Towards data-centric security for NATO operations. In: Tagarev, T., Stoianov, N. (eds.) Digital Transformation, Cyber Security and Resilience (DIGILIENCE 2020). CCIS, vol. 1790, pp. 75–92. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-44440-1_15

  7. Pradhan, M., Suri, N., Fuchs, C., Bloebaum, T.H., Marks, M.: Toward an architecture and data model to enable interoperability between federated mission networks and IoT-enabled smart city environments. IEEE Commun. Mag. 56, 163–169 (2018). https://doi.org/10.1109/MCOM.2018.1800305

    Article  Google Scholar 

  8. Sonnenwald, D.H.: Challenges in sharing information effectively: examples from command and control. Inf. Res. Int. Electron. J. 11, n4 (2006)

    Google Scholar 

  9. Ferrell, M.: A new view and guidelines for data centric security. James Madison University (2008). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=adaad0a235e2487be65cfe2513407154361cbc17

  10. Hennessy, S.D., Lauer, G.D., Zunic, N., Gerber, B., Nelson, A.C.: Data-centric security: integrating data privacy and data security. IBM J. Res. Dev. 53(2), 2 (2009)

    Article  Google Scholar 

  11. Draheim, D., Krimmer, R., Tammet, T.: On state-level architecture of digital government ecosystems: from ICT-driven to data-centric. In: Hameurlain, A., Tjoa, A.M. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XLVIII. LNCS, vol. 12670, pp. 165–195. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-63519-3_8

  12. Di Maio, A.: Moving Toward Data-Centric Government. Gartner (2013)

    Google Scholar 

  13. Krishnamurthi, S., Fisler, K.: Data-centricity: a challenge and opportunity for computing education. Commun. ACM 63, 24–26 (2020). https://doi.org/10.1145/3408056

    Article  Google Scholar 

  14. Aggarwal, C.C., Ashish, N., Sheth, A.: The internet of things: a survey from the data-centric perspective. In: Aggarwal, C. (ed.) Managing and Mining Sensor Data. Springer, Boston (2013). https://doi.org/10.1007/978-1-4614-6309-2_12

  15. Sreedhar, V.C.: Data-centric security: role analysis and role typestates. In: Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies (SACMAT 2006), p. 170. ACM Press, California (2006)

    Google Scholar 

  16. Hull, R.: Data-centricity and services interoperation. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-Oriented Computing (ICSOC 2013). LNCS, vol. 8274, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_1

  17. Kabir, A.H.: Data centric security. Natl Secur. Inst. J. 21–33 (2015)

    Google Scholar 

  18. Thalmann, S., et al.: Data analytics for industrial process improvement a vision paper. In: 2018 IEEE 20th Conference on Business Informatics (CBI), pp. 92–96. IEEE (2018)

    Google Scholar 

  19. Ponchione, L.: Implementation of policies in data-centric security solutions: a case study (2023). https://webthesis.biblio.polito.it/26895/

  20. Adler, S.: The strategic imperative of data governance. Int. Inst. Informatics & Systemics, Orlando (2007)

    Google Scholar 

  21. Lis, D., Gelhaar, J., Otto, B.: Data strategy and policies: the role of data governance in data ecosystems. In: Caballero, I., Piattini, M. (eds.) Data Governance, pp. 27–55. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43773-1_2

  22. Khatri, V., Brown, C.V.: Designing data governance. Commun. ACM 53, 148–152 (2010). https://doi.org/10.1145/1629175.1629210

    Article  Google Scholar 

  23. DAMA International: DAMA-DMBOK: Data Management Body of Knowledge. Technics Publications (2017)

    Google Scholar 

  24. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26, 13–23 (2002)

    Google Scholar 

  25. Bharosa, N., Janssen, M.: Principle-based design: a methodology and principles for capitalizing design experiences for information quality assurance. J. Homel. Secur. Emerg. Manage. 12(3), 469–496 (2015). https://doi.org/10.1515/jhsem-2014-0073

    Article  Google Scholar 

  26. Peng, S., et al.: A peer-to-peer file storage and sharing system based on consortium blockchain. Future Gener. Comput. Syst. 141, 197–204 (2023). https://doi.org/10.1016/j.future.2022.11.010

    Article  Google Scholar 

  27. Khan, A., Kim, T., Byun, H., Kim, Y.: SciSpace: a scientific collaboration workspace for geo-distributed HPC data centers. Future Gener. Comput. Syst. 101, 398–409 (2019). https://doi.org/10.1016/j.future.2019.06.006

    Article  Google Scholar 

  28. Vohra, K., Dave, M.: Multi-authority attribute based data access control in fog computing. Procedia Comput. Sci. 132, 1449–1457 (2018). https://doi.org/10.1016/j.procs.2018.05.078

    Article  Google Scholar 

  29. Mendes, P.: Combining data naming and context awareness for pervasive networks. J. Netw. Comput. Appl. 50, 114–125 (2015). https://doi.org/10.1016/j.jnca.2014.09.015

    Article  Google Scholar 

  30. Pagano, P., Candela, L., Castelli, D.: Data interoperability. Data Sci. J. 12, GRDI19–GRDI25 (2013)

    Google Scholar 

  31. Bhartiya, S., Mehrotra, D.: Exploring interoperability approaches and challenges in healthcare data exchange. In: Zeng, D., et al. (eds.) Smart Health (ICSH 2013). LNCS, vol. 8040, pp. 52–65. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39844-5_8

  32. Lee, Y.-C., Eastman, C.M., Lee, J.-K.: Validations for ensuring the interoperability of data exchange of a building information model. Autom. Constr. 58, 176–195 (2015)

    Article  Google Scholar 

  33. Wilgenbusch, J.C., Pardey, P.G., Hospodarsky, N., Lynch, B.J.: Addressing new data privacy realities affecting agricultural research and development: a tiered-risk, standards-based approach. Agron. J. 114, 2653–2668 (2022). https://doi.org/10.1002/agj2.20968

    Article  Google Scholar 

  34. Jia, K., Wang, Z., Fan, S., Zhai, S., He, G.: Data-centric approach: a novel systematic approach for cyber physical system heterogeneity in smart grid. IEEJ Trans. Electr. Electron. Eng. 14, 748–759 (2019). https://doi.org/10.1002/tee.22861

    Article  Google Scholar 

  35. Dahdal, S., Poltronieri, F., Tortonesi, M., Stefanelli, C., Suri, N.: A data mesh approach for enabling data-centric applications at the tactical edge. In: 2023 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–9. IEEE (2023)

    Google Scholar 

  36. Scarfone, K., Souppaya, M.: Data classification practices: facilitating data-centric security management (2021)

    Google Scholar 

  37. Rosenthal, A., Mork, P., Li, M.H., Stanford, J., Koester, D., Reynolds, P.: Cloud computing: a new business paradigm for biomedical information sharing. J. Biomed. Inform. 43, 342–353 (2010). https://doi.org/10.1016/j.jbi.2009.08.014

    Article  Google Scholar 

  38. Lindstrom, A.: On the syntax and semantics of architectural principles. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS 2006), pp. 178b–178b. IEEE (2006)

    Google Scholar 

  39. Haki, K., Legner, C.: The mechanics of enterprise architecture principles. J. Assoc. Inf. Syst. (2021)

    Google Scholar 

  40. Duncan, G., Stokes, L.: Data masking for disclosure limitation. WIREs Comput. Stats. 1, 83–92 (2009). https://doi.org/10.1002/wics.3

    Article  Google Scholar 

  41. International, D., Earley, S.: The DAMA dictionary of data management. Technics Publications, LLC (2011)

    Google Scholar 

  42. Dehghani, Z.: Data Mesh. O’Reilly Media (2022)

    Google Scholar 

  43. Pongpech, W.A.: A distributed data mesh paradigm for an event-based smart communities monitoring product. Procedia Comput. Sci. 220, 584–591 (2023). https://doi.org/10.1016/j.procs.2023.03.074

    Article  Google Scholar 

  44. Heggelund, D.G., Andresen, V.: Productization of data. Presented at the SPE Russian Oil and Gas Technical Conference and Exhibition October 28 (2008)

    Google Scholar 

  45. Machado, I., Costa, C., Santos, M.Y.: Data-driven information systems: the data mesh paradigm shift (2021)

    Google Scholar 

  46. Felici, M., Koulouris, T., Pearson, S.: Accountability for data governance in cloud ecosystems. In: 2013 IEEE Fifth International Conference on Cloud Computing Technology and Science (cloudcom), vol. 2, pp. 327–332 (2013). https://doi.org/10.1109/CloudCom.2013.157

  47. Thompson, N., Ravindran, R., Nicosia, S.: Government data does not mean data governance: lessons learned from a public sector application audit. Gov. Inf. Q. 32, 316–322 (2015). https://doi.org/10.1016/j.giq.2015.05.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Brous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brous, P., Hiel, M. (2024). Principles for the Secure Exchange of Sensitive Data Across Classified Networks: A Data-Centric Approach. In: Janssen, M., et al. Electronic Government. EGOV 2024. Lecture Notes in Computer Science, vol 14841. Springer, Cham. https://doi.org/10.1007/978-3-031-70274-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70274-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70273-0

  • Online ISBN: 978-3-031-70274-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics