Skip to main content

Landscape Analysis of Stochastic Policy Gradient Methods

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14942))

  • 849 Accesses

Abstract

Policy gradient methods are among the most important techniques in reinforcement learning. Despite the inherent non-concave nature of policy optimization, these methods demonstrate good behavior, both in practice and in theory. Hence, it is important to study the non-concave optimization landscape. This paper aims to provide a comprehensive landscape analysis of the objective function optimized by stochastic policy gradient methods. Using tools borrowed from statistics and topology, we prove a uniform convergence result for the empirical objective function, (and its gradient, Hessian and stationary points) to the corresponding population counterparts. Specifically, we derive \(\tilde{O}(\sqrt{|\mathcal {S}||\mathcal {A}|}/(1-\gamma )\sqrt{n})\) rates of convergence, with the sample size n, the state space \(\mathcal {S}\), the action space \(\mathcal {A}\), and the discount factor \(\gamma \). Furthermore, we prove the one-to-one correspondence of the non-degenerate stationary points between the population and the empirical objective. In particular, our findings are agnostic to the choice of the algorithm and hold for a wide range of gradient-based methods. Consequently, we are able to recover and improve numerous existing results through the vanilla policy gradient. To the best of our knowledge, this is the first work theoretically characterizing optimization landscapes of stochastic policy gradient methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For rewards in \([R_{\min }, R_{\max }]\) simply rescale these bounds.

References

  1. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  2. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  3. Nalpantidis, L., Polydoros, A.S.: Survey of model-based reinforcement learning: applications on robotics. J. Intell. Robot. Syst. 86(2), 153–173 (2017)

    Google Scholar 

  4. Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep re- inforcement learning from human preferences. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  5. OpenAI: Gpt-4 Technical report (2024)

    Google Scholar 

  6. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)

    Google Scholar 

  7. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, vol. 12. MIT Press (1999)

    Google Scholar 

  8. Kakade, S.M.: A natural policy gradient. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  9. Baxter, J., Bartlett, P.L.: Infinite-horizon policy-gradient estimation. J. Artif. Int. Res. 15(1), 319–350 (2001)

    Google Scholar 

  10. Agarwal, A., Kakade, S.M., Lee, J.D., Mahajan, G.: On the theory of policy gradient methods: optimality, approximation, and distribution shift. J. Mach. Learn. Res. 22(1) (2021)

    Google Scholar 

  11. Mei, J., Xiao, C., Szepesvari, C., Schuurmans, D.: On the global convergence rates of softmax policy gradient methods (2022)

    Google Scholar 

  12. Mei, J., Gao, Y., Dai, B., Szepesvari, C., Schuurmans, D.: Leveraging non- uniformity in first-order non-convex optimization. In: Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 7555–7564. PMLR (2021)

    Google Scholar 

  13. Xiao, L.: On the convergence rates of policy gradient methods. J. Mach. Learn. Res. 23(282), 1–36 (2022)

    MathSciNet  Google Scholar 

  14. Li, G., Wei, Y., Chi, Y., Gu, Y., Chen, Y.: Softmax policy gradient methods can take exponential time to converge. In: In Proceedings of Thirty Fourth Conference on Learning Theory, vol. 134, pp. 3107–3110 (2021)

    Google Scholar 

  15. Zhang, K., Koppel, A., Zhu, H., Başar, T.: Global convergence of policy gradient methods to (almost) locally optimal policies. SIAM J. Control Optim. 58(6), 3586–3612 (2020)

    Google Scholar 

  16. Mei, J., Dai, B., Xiao, C., Szepesvari, C., Schuurmans, D.: Understanding the effect of stochasticity in policy optimization. In: Advances in Neural Information Processing Systems, vol. 34, pp. 19339–19351 (2021)

    Google Scholar 

  17. Mei, J., Zhong, Z., Dai, B., Agarwal, A., Szepesvari, C., Schuurmans, D.: Stochastic gradient succeeds for bandits. In: Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 202, pp. 24325–24360. PMLR (2023)

    Google Scholar 

  18. Lu, M., Aghaei, M., Raj, A., Vaswani, S.: Practical principled policy optimization for finite MDPs. In: OPT 2023: Optimization for Machine Learning (2023)

    Google Scholar 

  19. Ding, Y., Zhang, J., Lavaei, J.: On the global optimum convergence of momentum-based policy gradient. In: Proceedings of The 25th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 151, pp. 1910–1934. PMLR (2022)

    Google Scholar 

  20. Yuan, R., Gower, R.M., Lazaric, A.: A general sample complexity analysis of vanilla policy gradient. In: Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, vol. 151, pp. 3332–3380. PMLR (2022)

    Google Scholar 

  21. Masiha, S., Salehkaleybar, S., He, N., Kiyavash, N., Thiran, P.: Stochastic second- order methods improve best-known sample complexity of SGD for gradient-dominated functions. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  22. Liu, Y., Zhang, K., Basar, T., Yin, W.: An improved analysis of (variance-reduced) policy gradient and natural policy gradient methods. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7624–7636 (2020)

    Google Scholar 

  23. Fatkhullin, I., Barakat, A., Kireeva, A., He, N.: Stochastic policy gradient methods: Improved sample complexity for Fisher-non-degenerate policies. In: Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 202, pp. 9827–9869. PMLR (2023)

    Google Scholar 

  24. Shen, Z., Ribeiro, A., Hassani, H., Qian, H., Mi, C.: Hessian aided policy gradient. In: Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 5729–5738. PMLR (2019)

    Google Scholar 

  25. Wachi, A., Wei, Y., Sui, Y.: Safe policy optimization with local generalized linear function approximations. CoRR abs/2111.04894 (2021)

    Google Scholar 

  26. Papini, M.: Safe policy optimization (2021)

    Google Scholar 

  27. Yang, L., Zheng, Q., Pan, G.: Sample complexity of policy gradient finding second-order stationary points. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp. 10630–10638 (2021)

    Google Scholar 

  28. Maniyar, M.P., Prashanth, L.A., Mondal, A., Bhatnagar, S.: A cubic-regularized policy newton algorithm for reinforcement learning (2023)

    Google Scholar 

  29. Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  30. Kawaguchi, K.: Deep learning without poor local minima. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  31. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. CoRR abs/1602.06664 (2016)

    Google Scholar 

  32. Mei, S., Bai, Y., Montanari, A.: The landscape of empirical risk for non-convex losses (2017)

    Google Scholar 

  33. Ge, R., Ma, T.: On the optimization landscape of tensor decompositions (2017)

    Google Scholar 

  34. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points efficiently. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1724–1732. PMLR (2017)

    Google Scholar 

  35. Du, S., Lee, J., Li, H., Wang, L., Zhai, X.: Gradient descent finds global minima of deep neural networks. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 1675–1685. PMLR (2019)

    Google Scholar 

  36. Sun, R.: Optimization for deep learning: theory and algorithms. CoRR abs/1912.08957 (2019)

    Google Scholar 

  37. Soltanolkotabi, M., Javanmard, A., Lee, J.D.: Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. IEEE Trans. Inf. Theory 65(2), 742–769 (2019)

    Article  MathSciNet  Google Scholar 

  38. Liu, X.: Neural networks with complex-valued weights have no spurious local minima. CoRR abs/2103.07287 (2021)

    Google Scholar 

  39. Caramanis, C., Fotakis, D., Kalavasis, A., Kontonis, V., Tzamos, C.: Optimizing solution-samplers for combinatorial problems: the landscape of policy-gradient method. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023)

    Google Scholar 

  40. Duan, J., Li, J., Chen, X., Zhao, K., Li, S.E., Zhao, L.: Optimization landscape of policy gradient methods for discrete-time static output feedback. IEEE Trans. Cybern. 1–14 (2024)

    Google Scholar 

  41. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    Book  Google Scholar 

  42. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, pp. 1057–1063 (2000)

    Google Scholar 

  43. Vapnik, V.N., Vapnik, V., et al.: Statistical learning theory (1998)

    Google Scholar 

  44. Khodadadian, S., Jhunjhunwala, P.R., Varma, S.M., Maguluri, S.T.: On the linear convergence of natural policy gradient algorithm. CoRR (2021)

    Google Scholar 

  45. Nesterov, Y., Polyak, B.T.: Cubic regularization of newton method and its global performance. Math. Program. 108(1), 177–205 (2006)

    Article  MathSciNet  Google Scholar 

  46. Dubrovin, B., Fomenko, A., Novikov, S.: On differentiable functions with isolated critical points. Topology 8(4), 361–369 (1969). https://doi.org/10.1016/0040-9383(69)90022-6

  47. Dubrovin, B., Fomenko, A., Novikov, S.: Modern Geometry-Methods and Applications: Part II: The Geometry and Topology of Manifolds. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-1100-6

    Book  Google Scholar 

  48. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  49. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingtu Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 339 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. (2024). Landscape Analysis of Stochastic Policy Gradient Methods. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14942. Springer, Cham. https://doi.org/10.1007/978-3-031-70344-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70344-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70343-0

  • Online ISBN: 978-3-031-70344-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics