Skip to main content

Spatiotemporal Covariance Neural Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14942))

Abstract

Modeling spatiotemporal interactions in multivariate time series is key to their effective processing, but challenging because of their irregular and often unknown structure. Statistical properties of the data provide useful biases to model interdependencies and are leveraged by correlation and covariance-based networks as well as by processing pipelines relying on principal component analysis (PCA). However, PCA and its temporal extensions suffer instabilities in the covariance eigenvectors when the corresponding eigenvalues are close to each other, making their application to dynamic and streaming data settings challenging. To address these issues, we exploit the analogy between PCA and graph convolutional filters to introduce the SpatioTemporal coVariance Neural Network (STVNN), a relational learning model that operates on the sample covariance matrix of the time series and leverages joint spatiotemporal convolutions to model the data. To account for the streaming and non-stationary setting, we consider an online update of the parameters and sample covariance matrix. We prove the STVNN is stable to the uncertainties introduced by these online estimations, thus improving over temporal PCA-based methods. Experimental results corroborate our theoretical findings and show that STVNN is competitive for multivariate time series processing, it adapts to changes in the data distribution, and it is orders of magnitude more stable than online temporal PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that in Equation (13) we kept explicitly the parameter suboptimality term outside the notation \(\mathcal {O}(1/t)\) to highlight the role of filter updates in the stability. The other terms \(\mathcal {O}(1/t)\) include perturbations due to the covariance uncertainty.

References

  1. Arguez, A., et al.: NOAA’s 1981–2010 U.S. climate normals: an overview. Bull. Am. Meteorological Soc. 93(11), 1687 – 1697 (2012)

    Google Scholar 

  2. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5833–5848 (2022)

    Article  Google Scholar 

  3. Bien, J., Tibshirani, R.J.: Sparse estimation of a covariance matrix. Biometrika 98(4), 807–820 (2011)

    Article  MathSciNet  Google Scholar 

  4. Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Computer Vision – ECCV 2002, pp. 707–720. Springer, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Brooks, D.: Deep learning and information geometry for time-series classification, Ph.D. thesis, Sorbonne Université (2020)

    Google Scholar 

  6. Cao, D., et al.: Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural. Inf. Process. Syst. 33, 17766–17778 (2020)

    Google Scholar 

  7. Cardoso, J.V.D.M., Ying, J., Palomar, D.P.: Algorithms for learning graphs in financial markets. arXiv preprint arXiv:2012.15410 (2020)

  8. Cardot, H., Degras, D.: Online principal component analysis in high dimension: which algorithm to choose? Int. Stat. Rev. 86(1), 29–50 (2018)

    Article  MathSciNet  Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2007)

    Google Scholar 

  10. Gama, F., Bruna, J., Ribeiro, A.: Stability properties of graph neural networks. IEEE Trans. Signal Process. 68, 5680–5695 (2020)

    Article  MathSciNet  Google Scholar 

  11. Garrigos, G., Gower, R.M.: Handbook of convergence theorems for (stochastic) gradient methods (2023)

    Google Scholar 

  12. Girault, B.: Stationary graph signals using an isometric graph translation. In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 1516–1520 (2015)

    Google Scholar 

  13. Golub, G.: Matrix Computations. JHU Press (2013). https://doi.org/10.56021/9781421407944

    Book  Google Scholar 

  14. Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., Funaya, K.: Robust online time series prediction with recurrent neural networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 816–825 (2016)

    Google Scholar 

  15. Habib, B., Isufi, E., van Breda, W., Jongepier, A., Cremer, J.L.: Deep statistical solver for distribution system state estimation. IEEE Trans. Power Syst. 39(2), 4039–4050 (2024)

    Article  Google Scholar 

  16. Isufi, E., Gama, F., Shuman, D.I., Segarra, S.: Graph filters for signal processing and machine learning on graphs. IEEE Trans. Signal Process., 1–32 (2024). https://doi.org/10.1109/TSP.2024.3349788

  17. Isufi, E., Loukas, A., Perraudin, N., Leus, G.: Forecasting time series with Varma recursions on graphs. IEEE Trans. Signal Process. 67(18), 4870–4885 (2019)

    Article  MathSciNet  Google Scholar 

  18. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: a survey. Expert Syst. Appl. 207, 117921 (2022)

    Article  Google Scholar 

  19. Jin, M., Zheng, Yu., Li, Y.F., Chen, S., Yang, B., Pan, S.: Multivariate time series forecasting with dynamic graph neural ODEs. IEEE Trans. Knowl. Data Eng. 35(9), 9168–9180 (2023). https://doi.org/10.1109/TKDE.2022.3221989

    Article  Google Scholar 

  20. Jolliffe, I.T.: Rotation of ill-defined principal components. J. Royal Stat. Soc. Ser. C Appl. Stat. 38(1), 139–147 (1989)

    Google Scholar 

  21. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

    Google Scholar 

  22. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 374 (2016)

    Google Scholar 

  23. Kerimov, B., et al.: Assessing the performances and transferability of graph neural network metamodels for water distribution systems. J. Hydroinf. 25(6), 2223–2234 (2023)

    Article  Google Scholar 

  24. Kolaczyk, E.D.: Statistical Analysis of Network Data: Methods and Models. Springer, New York, NY (2009). https://doi.org/10.1007/978-0-387-88146-1

    Book  Google Scholar 

  25. Loukas, A.: How close are the eigenvectors of the sample and actual covariance matrices? In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 2228–2237. PMLR (2017)

    Google Scholar 

  26. Marques, A.G., Segarra, S., Leus, G., Ribeiro, A.: Stationary graph processes and spectral estimation. IEEE Trans. Signal Process. 65(22), 5911–5926 (2017)

    Article  MathSciNet  Google Scholar 

  27. Perraudin, N., Vandergheynst, P.: Stationary signal processing on graphs. IEEE Trans. Signal Process. 65(13), 3462–3477 (2017)

    Article  MathSciNet  Google Scholar 

  28. Pham, Q., Liu, C., Sahoo, D., Hoi, S.C.: Learning fast and slow for online time series forecasting. arXiv preprint arXiv:2202.11672 (2022)

  29. Pourahmadi, M., Noorbaloochi, S.: Multivariate time series analysis of neuroscience data: some challenges and opportunities. Curr. Opin. Neurobiol. 37, 12–15 (2016)

    Google Scholar 

  30. Rui, L., Nejati, H., Cheung, N.M.: Dimensionality reduction of brain imaging data using graph signal processing. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1329–1333 (2016)

    Google Scholar 

  31. Saadallah, A., Mykula, H., Morik, K.: Online adaptive multivariate time series forecasting. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) Machine Learning and Knowledge Discovery in Databases, pp. 19–35. Springer, Cham (2023)

    Chapter  Google Scholar 

  32. Sanhudo, L., Rodrigues, J.: Enio Vasconcelos Filho: multivariate time series clustering and forecasting for building energy analysis: application to weather data quality control. J. Build. Eng. 35, 101996 (2021)

    Article  Google Scholar 

  33. Shahid, N., Perraudin, N., Kalofolias, V., Puy, G., Vandergheynst, P.: Fast robust PCA on graphs. IEEE J. Sel. Top. Signal Process. 10(4), 740–756 (2016)

    Article  Google Scholar 

  34. Sihag, S., Mateos, G., McMillan, C., Ribeiro, A.: Covariance neural networks. Adv. Neural. Inf. Process. Syst. 35, 17003–17016 (2022)

    Google Scholar 

  35. Sihag, S., Mateos, G., McMillan, C., Ribeiro, A.: Explainable brain age prediction using covariance neural networks. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  36. Sihag, S., Mateos, G., McMillan, C.T., Ribeiro, A.: Transferablility of covariance neural networks and application to interpretable brain age prediction using anatomical features. arXiv preprint arXiv:2305.01807 (2023)

  37. Vershynin, R.: High-dimensional probability: an introduction with applications in data science. In: Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2018)

    Google Scholar 

  38. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 753–763 (2020)

    Google Scholar 

  39. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: MTGNN (2020). https://github.com/nnzhan/MTGNN

  40. Yi, K., et al.: FourierGNN: rethinking multivariate time series forecasting from a pure graph perspective. arXivpreprint arXiv:2311.06190 (2023)

  41. Yi, K., et al.: Frequency-domain MLPS are more effective learners in time series forecasting. arXiv preprint arXiv:2311.06184 (2023)

Download references

Acknowledgments

The study was supported by the TU Delft AI Labs program and the NWO OTP GraSPA proposal #19497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cavallo .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 411 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavallo, A., Sabbaqi, M., Isufi, E. (2024). Spatiotemporal Covariance Neural Networks. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14942. Springer, Cham. https://doi.org/10.1007/978-3-031-70344-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70344-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70343-0

  • Online ISBN: 978-3-031-70344-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics