Skip to main content

Approximation Error of Sobolev Regular Functions with Tanh Neural Networks: Theoretical Impact on PINNs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14944))

  • 553 Accesses

Abstract

Considering the key role played by derivatives in Partial Differential Equations (PDEs), using the tanh activation function in Physics-Informed Neural Networks (PINNs) yields useful smoothness properties to derive theoretical guarantees in Sobolev norm. In this paper, we conduct an extensive functional analysis, unveiling tighter approximation bounds compared to prior works, especially for higher order PDEs. These better guarantees translate into smaller PINN architectures and improved generalization error with arbitrarily small Sobolev norms of the PDE residuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajaj, C., McLennan, L., Andeen, T., Roy, A.: Recipes for when physics fails: recovering robust learning of physics informed neural networks. Mach. Learn.: Sci. Technol. 4(1), 015013 (2023). https://doi.org/10.1088/2632-2153/acb416

  2. Constantine, G.M., Savits, T.H.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996). https://doi.org/10.1090/S0002-9947-96-01501-2

    Article  MathSciNet  Google Scholar 

  3. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  Google Scholar 

  4. De Ryck, T., Jagtap, A.D., Mishra, S.: Error estimates for physics-informed neural networks approximating the Navier-Stokes equations. IMA J. Num. Anal. drac085 (01 2023). https://doi.org/10.1093/imanum/drac085

  5. De Ryck, T., Lanthaler, S., Mishra, S.: On the approximation of functions by tanh neural networks. Neural Netw. 143, 732–750 (2021)

    Article  Google Scholar 

  6. Doumèche, N., Biau, G., Boyer, C.: Convergence and error analysis of pinns (2023)

    Google Scholar 

  7. Gühring, I., Kutyniok, G., Petersen, P.: Error bounds for approximations with deep relu neural networks in \(w^{s,p}\) norms (2019)

    Google Scholar 

  8. Hao, Z., et al.: Physics-informed machine learning: a survey on problems, methods and applications (2023)

    Google Scholar 

  9. Herrmann, L., Opschoor, J.A.A., Schwab, C.: Constructive deep RELU neural network approximation. J. Sci. Comput. 90(1), 75 (2022)

    Article  MathSciNet  Google Scholar 

  10. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  11. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nature Rev. Phys. 3(6) (5 2021). https://doi.org/10.1038/s42254-021-00314-5

  12. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  13. Shin, Y.: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes. Commun. Comput. Phys. 28(5), 2042–2074 (2020)

    Article  MathSciNet  Google Scholar 

  14. Shin, Y., Zhang, Z., Karniadakis, G.E.: Error estimates of residual minimization using neural networks for linear pdes (2023)

    Google Scholar 

  15. Wu, S., Zhu, A., Tang, Y., Lu, B.: Convergence of physics-informed neural networks applied to linear second-order elliptic interface problems (2023)

    Google Scholar 

  16. Yarotsky, D.: Error bounds for approximations with deep RELU networks. Neural Netw. 94, 103–114 (2017). https://doi.org/10.1016/j.neunet.2017.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Girault .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 504 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girault, B., Emonet, R., Habrard, A., Patracone, J., Sebban, M. (2024). Approximation Error of Sobolev Regular Functions with Tanh Neural Networks: Theoretical Impact on PINNs. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14944. Springer, Cham. https://doi.org/10.1007/978-3-031-70359-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70359-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70358-4

  • Online ISBN: 978-3-031-70359-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics