Abstract
Explainability is a key component in many applications involving deep neural networks (DNNs). However, current explanation methods for DNNs commonly leave it to the human observer to distinguish relevant explanations from spurious noise. This is not feasible anymore when going from easily human-accessible data such as images to more complex data such as genome sequences. To facilitate the accessibility of DNN outputs from such complex data and to increase explainability, we present a modification of the widely used explanation method layer-wise relevance propagation. Our approach enforces sparsity directly by pruning the relevance propagation for the different layers. Thereby, we achieve sparser relevance attributions for the input features as well as for the intermediate layers. As the relevance propagation is input-specific, we aim to prune the relevance propagation rather than the underlying model architecture. This allows to prune different neurons for different inputs and hence, might be more appropriate to the local nature of explanation methods. To demonstrate the efficacy of our method, we evaluate it on two types of data: images and genome sequences. We show that our modification indeed leads to noise reduction and concentrates relevance on the most important features compared to the baseline.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code available at https://gitlab.com/dacs-hpi/plrp.
References
Achtibat, R., et al.: From “Where” to “What”: Towards Human-Understandable Explanations through Concept Relevance Propagation. arXiv preprint arXiv:2206.03208 (2022)
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Alber, M., et al.: iNNvestigate neural networks! J. Mach. Learn. Res. 20(93), 1–8 (2019)
Ali, A., Schnake, T., Eberle, O., Montavon, G., Müller, K.R., Wolf, L.: XAI for transformers: better explanations through conservative propagation. In: International Conference on Machine Learning, pp. 435–451. PMLR (2022)
Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049 (2018)
Anders, C.J., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy. CoRR abs/2106.13200 (2021)
Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206 (2017)
Arras, L., Osman, A., Samek, W.: CLEVR-XAI: a benchmark dataset for the ground truth evaluation of neural network explanations. Inf. Fusion 81, 14–40 (2022)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10 (2015)
Bartoszewicz, J.M., Seidel, A., Renard, B.Y.: Interpretable detection of novel human viruses from genome sequencing data. NAR Genomics Bioinform. 3(1), lqab004 (2021)
Bhatt, U., Weller, A., Moura, J.M.: Evaluating and aggregating feature-based model explanations. arXiv preprint arXiv:2005.00631 (2020)
Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8
Chalasani, P., Chen, J., Chowdhury, A.R., Wu, X., Jha, S.: Concise explanations of neural networks using adversarial training. In: International Conference on Machine Learning, pp. 1383–1391. PMLR (2020)
Chormai, P., Herrmann, J., Müller, K.R., Montavon, G.: Disentangled explanations of neural network predictions by finding relevant subspaces. arXiv preprint arXiv:2212.14855 (2022)
Eraslan, G., Avsec, Ž, Gagneur, J., Theis, F.J.: Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20(7), 389–403 (2019)
Gu, J., Yang, Y., Tresp, V.: Understanding individual decisions of CNNs via contrastive backpropagation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 119–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_8
Gupta, S., Chan, Y.H., Rajapakse, J.C., Initiative, A.D.N., et al.: Obtaining leaner deep neural networks for decoding brain functional connectome in a single shot. Neurocomputing 453, 326–336 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hedström, A., et al.: Quantus: an explainable AI toolkit for responsible evaluation of neural network explanations and beyond. J. Mach. Learn. Res. 24(34), 1–11 (2023)
Iwana, B.K., Kuroki, R., Uchida, S.: Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4176–4185. IEEE (2019)
Jung, Y.J., Han, S.H., Choi, H.J.: Explaining CNN and RNN using selective layer-wise relevance propagation. IEEE Access 9, 18670–18681 (2021)
Kohlbrenner, M., Bauer, A., Nakajima, S., Binder, A., Samek, W., Lapuschkin, S.: Towards best practice in explaining neural network decisions with LRP. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)
Lemanczyk, M.S., Bartoszewicz, J.M., Renard, B.Y.: Motif Interactions Affect Post-Hoc Interpretability of Genomic Convolutional Neural Networks. bioRxiv preprint bioRxiv:2024.02.15.580353 (2024)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)
Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209 (2019)
Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015)
Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2016)
Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Müller, K.R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247–278 (2021)
Schnake, T., et al.: Higher-order explanations of graph neural networks via relevant walks. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7581–7596 (2021)
Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)
Sixt, L., Granz, M., Landgraf, T.: When explanations lie: why many modified BP attributions fail. In: International Conference on Machine Learning, pp. 9046–9057. PMLR (2020)
Yeom, S.K., et al.: Pruning by explaining: a novel criterion for deep neural network pruning. Pattern Recogn. 115, 107899 (2021)
Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878 (2017)
Acknowledgments
We gratefully acknowledge funding by grants KL 3037/7-1 (to NK) and RE 3474/8-1 (to BYR), project P5 in the Research Unit KI-FOR 5363 of the German Research Foundation (DFG).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yanez Sarmiento, P., Witzke, S., Klein, N., Renard, B.Y. (2024). Sparse Explanations of Neural Networks Using Pruned Layer-Wise Relevance Propagation. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14944. Springer, Cham. https://doi.org/10.1007/978-3-031-70359-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-70359-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70358-4
Online ISBN: 978-3-031-70359-1
eBook Packages: Computer ScienceComputer Science (R0)