Skip to main content

MT-HCCAR: Multi-task Deep Learning with Hierarchical Classification and Attention-Based Regression for Cloud Property Retrieval

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2024)

Abstract

In Earth science, accurate retrieval of cloud properties including cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction is essential in atmospheric and environmental studies. Conventional methods rely on distinct models for each sensor due to their unique spectral characteristics. Recently, machine/deep learning has been embraced to extract features from satellite datasets, yet existing approaches lack architectures capturing hierarchical relationships among tasks. Additionally, given the spectral diversity among sensors, developing models with robust generalization capabilities remains challenging for related research. There is also a notable absence of methods evaluated across different satellite sensors. In response, we propose MT-HCCAR, an end-to-end deep learning model employing multi-task learning. MT-HCCAR simultaneously handles cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). It integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Experimental evaluations, including comparisons with baseline methods and ablation studies, demonstrate that MT-HCCAR achieves optimal performance across various evaluation metrics and satellite datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Advanced Baseline Imager (ABI) Sensor. https://ncc.nesdis.noaa.gov/GOESR/ABI.php. Accessed 22 Mar 2024

  2. GitHub Repository of Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval (MT-HCCAR ). https://github.com/AI-4-atmosphere-remote-sensing/MT-HCCAR. Accessed 10 June 2024

  3. Moderate Resolution Imaging Spec- troradiometer (MODIS) Sensor. https://modis.gsfc.nasa.gov/. Accessed 22 Mar 2024

  4. NASA PACE Validation Plan, 2020. https://pace.oceansciences.org/docs/PACE_Validation_Plan_14July2020.pdf. Accessed 22 Mar 2024

  5. Ocean Color Instrument (OCI) Sensor. https://pace.oceansciences.org/oci.htm. Accessed 22 Mar 2024

  6. Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor. https://ncc.nesdis.noaa.gov/VIIRS/. Accessed 22 Mar 2024

  7. Chen, J., Hu, W., Cao, D., Zhang, Z., Chen, Z.: A novel multi-task learning method with attention mechanism for wind turbine blades imbalance fault diagnosis. In: 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), pp. 857–862. IEEE (2022)

    Google Scholar 

  8. Chen, N., et al.: New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ. 219, 62–71 (2018)

    Article  Google Scholar 

  9. Coddington, O.M., et al.: The tsis-1 hybrid solar reference spectrum. Geophys. Res. Lett. 48(12), e2020GL091709 (2021)

    Google Scholar 

  10. Emde, C., et al.: The libradtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 9(5), 1647–1672 (2016)

    Google Scholar 

  11. Guo, J., Yang, J., Yue, H., Tan, H., Hou, C., Li, K.: Cdnetv2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence. IEEE Trans. Geosci. Remote Sens. 59(1), 700–713 (2020)

    Article  Google Scholar 

  12. He, Q., Sun, X., Yan, Z., Fu, K.: Dabnet: deformable contextual and boundary-weighted network for cloud detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)

    Google Scholar 

  13. Hollmann, R., et al.: The ESA climate change initiative: satellite data records for essential climate variables. Bull. Am. Meteor. Soc. 94(10), 1541–1552 (2013)

    Article  Google Scholar 

  14. Huang, X., Wang, C., Purushotham, S., Wang, J.: VDAM: vae based domain adaptation for cloud property retrieval from multi-satellite data. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems. ACM SIGSPATIAL (2022)

    Google Scholar 

  15. Ilteralp, M., Ariman, S., Aptoula, E.: A deep multitask semisupervised learning approach for chlorophyll-a retrieval from remote sensing images. Remote Sens. 14(1), 18 (2021)

    Article  Google Scholar 

  16. Kuga, R., Kanezaki, A., Samejima, M., Sugano, Y., Matsushita, Y.: Multi-task learning using multi-modal encoder-decoder networks with shared skip connections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 403–411 (2017)

    Google Scholar 

  17. Liu, C., et al.: A machine learning-based cloud detection algorithm for the himawari-8 spectral image. Adv. Atmos. Sci. 39(12), 1994–2007 (2022)

    Article  Google Scholar 

  18. Miranda, F.M., Köhnecke, N., Renard, B.Y.: Hiclass: a python library for local hierarchical classification compatible with scikit-learn. J. Mach. Learn. Res. 24(29), 1–17 (2023)

    Google Scholar 

  19. Platnick, S., et al.: The nasa modis-viirs continuity cloud optical properties products. Remote Sens. 13(1), 2 (2020)

    Article  Google Scholar 

  20. Sayer, A.M., et al.: The chroma cloud-top pressure retrieval algorithm for the plankton, aerosol, cloud, ocean ecosystem (pace) satellite mission. Atmos. Meas. Techn. 16(4), 969–996 (2023)

    Article  Google Scholar 

  21. Shao, Z., Pan, Y., Diao, C., Cai, J.: Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Trans. Geosci. Remote Sens. 57(6), 4062–4076 (2019)

    Article  Google Scholar 

  22. Toshniwal, S., Tang, H., Lu, L., Livescu, K.: Multitask learning with low-level auxiliary tasks for encoder-decoder based speech recognition. arXiv preprint arXiv:1704.01631 (2017)

  23. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  24. Voigt, A., Albern, N., Ceppi, P., Grise, K., Li, Y., Medeiros, B.: Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change. Wiley Interdisc. Rev. Clim. Change 12(2), e694 (2021)

    Article  Google Scholar 

  25. Wang, C., Platnick, S., Meyer, K., Zhang, Z., Zhou, Y.: A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations. Atmos. Meas. Techn. 13(5), 2257–2277 (2020)

    Article  Google Scholar 

  26. Wang, Q., Zhou, C., Zhuge, X., Liu, C., Weng, F., Wang, M.: Retrieval of cloud properties from thermal infrared radiometry using convolutional neural network. Remote Sens. Environ. 278, 113079 (2022)

    Article  Google Scholar 

  27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  28. Werdell, P.J., et al.: The plankton, aerosol, cloud, ocean ecosystem mission: status, science, advances. Bull. Am. Meteor. Soc. 100(9), 1775–1794 (2019)

    Article  Google Scholar 

  29. Yang, Y.: Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using himawari-8 data. Remote Sens. Environ. 273, 112971 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a student fellowship from Goddard Earth Sciences Technology and Research (GESTAR) II, UMBC, grant OAC–1942714 from the National Science Foundation (NSF) and grant 80NSSC21M0027 from the National Aeronautics and Space Administration (NASA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4774 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Sayer, A.M., Carroll, I.T., Huang, X., Wang, J. (2024). MT-HCCAR: Multi-task Deep Learning with Hierarchical Classification and Attention-Based Regression for Cloud Property Retrieval. In: Bifet, A., Krilavičius, T., Miliou, I., Nowaczyk, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14950. Springer, Cham. https://doi.org/10.1007/978-3-031-70381-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70381-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70380-5

  • Online ISBN: 978-3-031-70381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics