Abstract
In Earth science, accurate retrieval of cloud properties including cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction is essential in atmospheric and environmental studies. Conventional methods rely on distinct models for each sensor due to their unique spectral characteristics. Recently, machine/deep learning has been embraced to extract features from satellite datasets, yet existing approaches lack architectures capturing hierarchical relationships among tasks. Additionally, given the spectral diversity among sensors, developing models with robust generalization capabilities remains challenging for related research. There is also a notable absence of methods evaluated across different satellite sensors. In response, we propose MT-HCCAR, an end-to-end deep learning model employing multi-task learning. MT-HCCAR simultaneously handles cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). It integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Experimental evaluations, including comparisons with baseline methods and ablation studies, demonstrate that MT-HCCAR achieves optimal performance across various evaluation metrics and satellite datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Advanced Baseline Imager (ABI) Sensor. https://ncc.nesdis.noaa.gov/GOESR/ABI.php. Accessed 22 Mar 2024
GitHub Repository of Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval (MT-HCCAR ). https://github.com/AI-4-atmosphere-remote-sensing/MT-HCCAR. Accessed 10 June 2024
Moderate Resolution Imaging Spec- troradiometer (MODIS) Sensor. https://modis.gsfc.nasa.gov/. Accessed 22 Mar 2024
NASA PACE Validation Plan, 2020. https://pace.oceansciences.org/docs/PACE_Validation_Plan_14July2020.pdf. Accessed 22 Mar 2024
Ocean Color Instrument (OCI) Sensor. https://pace.oceansciences.org/oci.htm. Accessed 22 Mar 2024
Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor. https://ncc.nesdis.noaa.gov/VIIRS/. Accessed 22 Mar 2024
Chen, J., Hu, W., Cao, D., Zhang, Z., Chen, Z.: A novel multi-task learning method with attention mechanism for wind turbine blades imbalance fault diagnosis. In: 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), pp. 857–862. IEEE (2022)
Chen, N., et al.: New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ. 219, 62–71 (2018)
Coddington, O.M., et al.: The tsis-1 hybrid solar reference spectrum. Geophys. Res. Lett. 48(12), e2020GL091709 (2021)
Emde, C., et al.: The libradtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 9(5), 1647–1672 (2016)
Guo, J., Yang, J., Yue, H., Tan, H., Hou, C., Li, K.: Cdnetv2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence. IEEE Trans. Geosci. Remote Sens. 59(1), 700–713 (2020)
He, Q., Sun, X., Yan, Z., Fu, K.: Dabnet: deformable contextual and boundary-weighted network for cloud detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)
Hollmann, R., et al.: The ESA climate change initiative: satellite data records for essential climate variables. Bull. Am. Meteor. Soc. 94(10), 1541–1552 (2013)
Huang, X., Wang, C., Purushotham, S., Wang, J.: VDAM: vae based domain adaptation for cloud property retrieval from multi-satellite data. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems. ACM SIGSPATIAL (2022)
Ilteralp, M., Ariman, S., Aptoula, E.: A deep multitask semisupervised learning approach for chlorophyll-a retrieval from remote sensing images. Remote Sens. 14(1), 18 (2021)
Kuga, R., Kanezaki, A., Samejima, M., Sugano, Y., Matsushita, Y.: Multi-task learning using multi-modal encoder-decoder networks with shared skip connections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 403–411 (2017)
Liu, C., et al.: A machine learning-based cloud detection algorithm for the himawari-8 spectral image. Adv. Atmos. Sci. 39(12), 1994–2007 (2022)
Miranda, F.M., Köhnecke, N., Renard, B.Y.: Hiclass: a python library for local hierarchical classification compatible with scikit-learn. J. Mach. Learn. Res. 24(29), 1–17 (2023)
Platnick, S., et al.: The nasa modis-viirs continuity cloud optical properties products. Remote Sens. 13(1), 2 (2020)
Sayer, A.M., et al.: The chroma cloud-top pressure retrieval algorithm for the plankton, aerosol, cloud, ocean ecosystem (pace) satellite mission. Atmos. Meas. Techn. 16(4), 969–996 (2023)
Shao, Z., Pan, Y., Diao, C., Cai, J.: Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Trans. Geosci. Remote Sens. 57(6), 4062–4076 (2019)
Toshniwal, S., Tang, H., Lu, L., Livescu, K.: Multitask learning with low-level auxiliary tasks for encoder-decoder based speech recognition. arXiv preprint arXiv:1704.01631 (2017)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Voigt, A., Albern, N., Ceppi, P., Grise, K., Li, Y., Medeiros, B.: Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change. Wiley Interdisc. Rev. Clim. Change 12(2), e694 (2021)
Wang, C., Platnick, S., Meyer, K., Zhang, Z., Zhou, Y.: A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations. Atmos. Meas. Techn. 13(5), 2257–2277 (2020)
Wang, Q., Zhou, C., Zhuge, X., Liu, C., Weng, F., Wang, M.: Retrieval of cloud properties from thermal infrared radiometry using convolutional neural network. Remote Sens. Environ. 278, 113079 (2022)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Werdell, P.J., et al.: The plankton, aerosol, cloud, ocean ecosystem mission: status, science, advances. Bull. Am. Meteor. Soc. 100(9), 1775–1794 (2019)
Yang, Y.: Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using himawari-8 data. Remote Sens. Environ. 273, 112971 (2022)
Acknowledgments
This work is supported by a student fellowship from Goddard Earth Sciences Technology and Research (GESTAR) II, UMBC, grant OAC–1942714 from the National Science Foundation (NSF) and grant 80NSSC21M0027 from the National Aeronautics and Space Administration (NASA).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, X., Sayer, A.M., Carroll, I.T., Huang, X., Wang, J. (2024). MT-HCCAR: Multi-task Deep Learning with Hierarchical Classification and Attention-Based Regression for Cloud Property Retrieval. In: Bifet, A., Krilavičius, T., Miliou, I., Nowaczyk, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14950. Springer, Cham. https://doi.org/10.1007/978-3-031-70381-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-70381-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70380-5
Online ISBN: 978-3-031-70381-2
eBook Packages: Computer ScienceComputer Science (R0)