Skip to main content

Looking for Change: A Computer Vision Approach for Concept Drift Detection in Process Mining

  • Conference paper
  • First Online:
Business Process Management (BPM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14940))

Included in the following conference series:

Abstract

Concept drift in process mining refers to a situation where a process undergoes changes over time, leading to a single event log containing data from multiple process versions. To avoid mixing these versions up during analysis, various techniques have been proposed to detect concept drifts. Yet, the performance of these techniques, especially in situations when event logs involve noise or gradual drifts, is shown to be far from optimal. A possible cause for this is that existing techniques are developed according to algorithmic design decisions, operating on assumptions about how drifts manifest themselves in event logs, which may not always reflect reality. In light of this, we propose a completely different approach, using a deep learning model that we trained to learn to recognize drifts. Our computer vision approach for concept drift detection (CV4CDD) uses an image-based representation that visualizes differences in process behavior over time, which enables us to subsequently apply a state-of-the-art object detection model to detect concept drifts. Our experiments reveal that our approach is considerably more accurate and robust than existing techniques, highlighting the promising nature of this new paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available online: https://python-pillow.org.

  2. 2.

    TensorFlow Model Garden, Available online: https://github.com/tensorflow/models.

  3. 3.

    COCO dataset, Available online: https://cocodataset.org/.

  4. 4.

    If an input image provided for inference has a different pixel size, i.e., because it was established using a different number of windows N, RetinaNet automatically rescales the image to the default size.

  5. 5.

    Project repository: https://gitlab.uni-mannheim.de/processanalytics/cv4cdd,

    DOI: https://doi.org/10.5281/zenodo.12073054.

  6. 6.

    Given the non-determinism involved in training deep learning models, we repeated the training and inference procedure of our approach five times. These repetitions yielded standard deviations of just 0.0087 in recall, 0.0029 in precision, and 0.0067 in F1-score (for CDLG test). We report on the results of the first run in the remainder.

  7. 7.

    Available at http://apromore.org/platform/tools.

References

  1. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. Adams, J.N., Pitsch, C., Brockhoff, T., van der Aalst, W.: An experimental evaluation of process concept drift detection. Proc. VLDB Endow. 16(8) (2023)

    Google Scholar 

  3. Bose, R.J.C., Van Der Aalst, W., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2013)

    Article  Google Scholar 

  4. Brockhoff, T., Uysal, M.S., van der Aalst, W.: Time-aware concept drift detection using the earth mover’s distance. In: Proceedings of the ICPM, pp. 33–40. IEEE (2020)

    Google Scholar 

  5. Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation goals for online process mining: a concept drift perspective. IEEE Trans. Serv. Comput. 15(4), 2473–2489 (2022)

    Article  Google Scholar 

  6. van Der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. CSRD 23, 99–113 (2009)

    Google Scholar 

  7. Elkhawaga, G., Abuelkheir, M., Barakat, S.I., Riad, A.M., Reichert, M.: CONDA-PM: a systematic review and framework for concept drift analysis in process mining. Algorithms 13(7), 161 (2020)

    Article  Google Scholar 

  8. Grimm, J., Kraus, A., van der Aa, H.: CDLG: a tool for the generation of event logs with concept drifts. In: BPM Demos, vol. 3216, pp. 92–96. CEUR-WS (2022)

    Google Scholar 

  9. Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P.M., Buurman, J.: Detecting changes in process behavior using comparative case clustering. In: Ceravolo, P., Rinderle-Ma, S. (eds.) SIMPDA 2015. LNBIP, vol. 244, pp. 54–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53435-0_3

    Chapter  Google Scholar 

  10. Lin, L., Wen, L., Lin, L., Pei, J., Yang, H.: LCDD: detecting business process drifts based on local completeness. IEEE Trans. Serv. Comput. 15(4), 2086–2099 (2020)

    Article  Google Scholar 

  11. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Liu, L., et al.: Deep learning for generic object detection: a survey. IJCV 128, 261–318 (2020)

    Article  Google Scholar 

  14. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detecting deviating behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 126–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_11

    Chapter  Google Scholar 

  15. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

    Article  Google Scholar 

  16. Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change point detection and dealing with gradual and multi-order dynamics in process mining. In: Matulevičius, R., Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229, pp. 161–178. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21915-8_11

    Chapter  Google Scholar 

  17. Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.M.: Multi-perspective comparison of business process variants based on event logs. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 449–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_32

    Chapter  Google Scholar 

  18. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.: Detecting drift from event streams of unpredictable business processes. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_26

    Chapter  Google Scholar 

  19. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D., Modugno, G.: Orange: outcome-oriented predictive process monitoring based on image encoding and CNNs. IEEE Access 8, 184073–184086 (2020)

    Article  Google Scholar 

  20. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate business process representation learning utilizing Gramian angular fields and convolutional neural networks. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 327–344. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_21

    Chapter  Google Scholar 

  21. Sato, D.M.V., De Freitas, S.C., Barddal, J.P., Scalabrin, E.E.: A survey on concept drift in process mining. ACM Comput. Surv. 54(9), 1–38 (2021)

    Article  Google Scholar 

  22. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using graph metrics on process graphs. In: Proceedings of the S-BPM, vol. 9, pp. 1–10. ACM (2017)

    Google Scholar 

  23. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on synthesis from well-structured behavioral profiles. Int. J. Coop. Inf. Syst. 21(01), 55–83 (2012)

    Article  Google Scholar 

  24. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

  25. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Visual drift detection for event sequence data of business processes. IEEE Trans. Vis. Comput. Graph. 28(8), 3050–3068 (2021)

    Article  Google Scholar 

  26. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 524–542. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_33

    Chapter  Google Scholar 

Download references

Acknowledgment

We acknowledge the work of Jonathan Kößler for conducting the initial testing of the paper’s idea in his master’s thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kraus, A., van der Aa, H. (2024). Looking for Change: A Computer Vision Approach for Concept Drift Detection in Process Mining. In: Marrella, A., Resinas, M., Jans, M., Rosemann, M. (eds) Business Process Management. BPM 2024. Lecture Notes in Computer Science, vol 14940. Springer, Cham. https://doi.org/10.1007/978-3-031-70396-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70396-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70395-9

  • Online ISBN: 978-3-031-70396-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics