Skip to main content

Uncovering Patterns for Local Explanations in Outcome-Based Predictive Process Monitoring

  • Conference paper
  • First Online:
Business Process Management (BPM 2024)

Abstract

Explainable Predictive Process Monitoring aims at deriving explanations of the inner workings of black-box classifiers used to predict the continuation of ongoing process executions. Most existing techniques use data attributes (e.g., the loan amount) to explain the prediction outcomes. However, explanations based on control flow patterns (such as calling the customers first, and then validating the application, or providing early discounts) cannot be provided. This omission may result in many valuable, actionable explanations going undetected. To fill this gap, this paper proposes PABLO (PAttern Based LOcal Explanations), a framework that generates local control-flow aware explanations for a given predictive model. Given a process execution and its outcome prediction, PABLO discovers control-flow patterns from a set of alternative executions, which are used to deliver explanations that support or flip the prediction for the given process execution. Evaluation against real-life event logs shows that PABLO provides high-quality explanations of predictions in terms of fidelity and accurately explains the reasoning behind the predictions of the black box models. A qualitative comparison showcases how the patterns that PABLO derives can influence the prediction outcome, aligned with the early findings from the literature.

This work was partially supported by the Italian (MUR) under PRIN project PINPOINT Prot. 2020FNEB27, CUP H23C22000280006 and H45E21000210001 and PNRR project FAIR-Future AI Research (PE00000013), under the NRRP MUR program funded by NextGenerationEU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/doi/10.5281/zenodo.11368187.

  2. 2.

    Hyperparameter optimisation was done by using the hyperopt python library.

  3. 3.

    Link to the report of the challenger winners.

References

  1. Buliga, A., Di Francescomarino, C., Ghidini, C., Maggi, F.M.: Counterfactuals and ways to build them: evaluating approaches in predictive process monitoring. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 558–574. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34560-9_33

    Chapter  Google Scholar 

  2. Elkhawaga, G., Abu-Elkheir, M., Reichert, M.: Explainability of predictive process monitoring results: can you see my data issues? Appl. Sci. 12(16), 8192 (2022)

    Article  Google Scholar 

  3. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F.: Factual and counterfactual explanations for black box decision making. IEEE Intell. Syst. 34(6), 14–23 (2019)

    Article  Google Scholar 

  4. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business process monitoring using gated graph neural networks. J. Decis. Syst. 29(sup1), 312–327 (2020)

    Article  Google Scholar 

  5. Hsieh, C., Moreira, C., Ouyang, C.: DiCE4EL: interpreting process predictions using a milestone-aware counterfactual approach. In: 2021 3rd International Conference on Process Mining (ICPM), pp. 88–95 (2021)

    Google Scholar 

  6. Huang, T., Metzger, A., Pohl, K.: Counterfactual explanations for predictive business process monitoring. In: Themistocleous, M., Papadaki, M. (eds.) EMCIS 2021. LNBIP, vol. 437, pp. 399–413. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95947-0_28

    Chapter  Google Scholar 

  7. Hundogan, O., Lu, X., Du, Y., Reijers, H.A.: CREATED: generating viable counterfactual sequences for predictive process analytics. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 541–557. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34560-9_32

    Chapter  Google Scholar 

  8. Mehdiyev, N., Fettke, P.: Explainable artificial intelligence for process mining: a general overview and application of a novel local explanation approach for predictive process monitoring. In: Pedrycz, W., Chen, S.-M. (eds.) Interpretable Artificial Intelligence: A Perspective of Granular Computing. SCI, vol. 937, pp. 1–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64949-4_1

    Chapter  Google Scholar 

  9. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  10. Rizzi, W., Di Francescomarino, C., Maggi, F.M.: Explainability in predictive process monitoring: when understanding helps improving. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 141–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_9

    Chapter  Google Scholar 

  11. Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0_6

    Chapter  Google Scholar 

  12. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 1–57 (2019)

    Article  Google Scholar 

  13. Vazifehdoostirani, M., Genga, L., Lu, X., Verhoeven, R., van Laarhoven, H., Dijkman, R.: Interactive multi-interest process pattern discovery. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) BPM 2023. LNCS, vol. 14159, pp. 303–319. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41620-0_18

    Chapter  Google Scholar 

  14. Wickramanayake, B., Ouyang, C., Xu, Y., Moreira, C.: Generating multi-level explanations for process outcome predictions. Eng. Appl. Artif. Intell. 125, 106678 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Buliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buliga, A. et al. (2024). Uncovering Patterns for Local Explanations in Outcome-Based Predictive Process Monitoring. In: Marrella, A., Resinas, M., Jans, M., Rosemann, M. (eds) Business Process Management. BPM 2024. Lecture Notes in Computer Science, vol 14940. Springer, Cham. https://doi.org/10.1007/978-3-031-70396-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70396-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70395-9

  • Online ISBN: 978-3-031-70396-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics