Skip to main content

Learning Automata Strategies for Prolonging Lifetime of Wireless Sensor Networks

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection (PAAMS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15157))

  • 184 Accesses

Abstract

This paper aims to solve the Maximum Lifetime Coverage Problem (MLCP) in Wireless Sensor Networks (WSNs) by incorporating a Learning Automaton. The proposed framework seeks to determine an optimized activity schedule that extends the network’s lifespan while ensuring that the monitoring of designated target areas meets predefined coverage requirements. The proposed algorithm harnesses the advantages of localized algorithms, including leveraging limited knowledge of neighboring nodes, fostering self-organization, and effectively prolonging the network’s longevity while maintaining the required coverage ratio in the target field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gąsior, J., Seredyński, F.: A learning automata-based approach to lifetime optimization in wireless sensor networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2021. LNCS (LNAI), vol. 12854, pp. 371–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87986-0_33

    Chapter  Google Scholar 

  2. Gąsior, J., Seredyński, F., Hoffmann, R.: Towards self-organizing sensor networks: game-theoretic \(\epsilon \)-learning automata-based approach. In: Cellular Automata, pp. 125–136 (2018)

    Google Scholar 

  3. Gudla, S., Kuda, N.R.: Learning automata based energy efficient and reliable data delivery routing mechanism in wireless sensor networks. J. King Saud Univ. Comput. Inf. Sci. 34(8), 5759–5765 (2022)

    Google Scholar 

  4. Lin, Y., Wang, X., Hao, F., Wang, L., Zhang, L., Zhao, R.: An on-demand coverage based self-deployment algorithm for big data perception in mobile sensing networks. Futur. Gener. Comput. Syst. 82, 220–234 (2018)

    Article  Google Scholar 

  5. Mahgoub, I.: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems. CRC Press, Boca Raton (2019)

    Google Scholar 

  6. Manju, Chand, S., Kumar, B.: Target coverage heuristic based on learning automata in wireless sensor networks. IET Wirel. Sens. Syst. 8(3), 109–115 (2018)

    Google Scholar 

  7. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall Inc, USA (1989)

    Google Scholar 

  8. Nedić, A., Liu, J.: Distributed optimization for control. Ann. Rev. Control, Robot. Auton. Syst. 1(1), 77–103 (2018)

    Article  Google Scholar 

  9. Oommen, J., Misra, S.: Cybernetics and learning automata. In: Nof, S. (ed.) Springer Handbook of Automation, pp. 221–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78831-7_12

    Chapter  Google Scholar 

  10. Qarehkhani, A., Golsorkhtabaramiri, M., Mohamadi, H., Yadollahzadeh-Tabari, M.: Solving the target coverage problem in multilevel wireless networks capable of adjusting the sensing angle using continuous learning automata. IET Commun. 16(2), 151–163 (2022)

    Article  Google Scholar 

  11. Upreti, R., Rauniyar, A., Kunwar, J., Haugerud, H., Engelstad, P., Yazidi, A.: Adaptive pursuit learning for energy-efficient target coverage in wireless sensor networks. Concurrency Comput. Pract. Exp. 34(7), e5975 (2022)

    Article  Google Scholar 

  12. Yetgin, H., Cheung, K.T.K., El-Hajjar, M., Hanzo, L.H.: A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Commun. Surv. Tutorials 19(2), 828–854 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Gąsior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gąsior, J. (2025). Learning Automata Strategies for Prolonging Lifetime of Wireless Sensor Networks. In: Mathieu, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. PAAMS 2024. Lecture Notes in Computer Science(), vol 15157. Springer, Cham. https://doi.org/10.1007/978-3-031-70415-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70415-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70414-7

  • Online ISBN: 978-3-031-70415-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics