Abstract
This paper aims to solve the Maximum Lifetime Coverage Problem (MLCP) in Wireless Sensor Networks (WSNs) by incorporating a Learning Automaton. The proposed framework seeks to determine an optimized activity schedule that extends the network’s lifespan while ensuring that the monitoring of designated target areas meets predefined coverage requirements. The proposed algorithm harnesses the advantages of localized algorithms, including leveraging limited knowledge of neighboring nodes, fostering self-organization, and effectively prolonging the network’s longevity while maintaining the required coverage ratio in the target field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gąsior, J., Seredyński, F.: A learning automata-based approach to lifetime optimization in wireless sensor networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2021. LNCS (LNAI), vol. 12854, pp. 371–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87986-0_33
Gąsior, J., Seredyński, F., Hoffmann, R.: Towards self-organizing sensor networks: game-theoretic \(\epsilon \)-learning automata-based approach. In: Cellular Automata, pp. 125–136 (2018)
Gudla, S., Kuda, N.R.: Learning automata based energy efficient and reliable data delivery routing mechanism in wireless sensor networks. J. King Saud Univ. Comput. Inf. Sci. 34(8), 5759–5765 (2022)
Lin, Y., Wang, X., Hao, F., Wang, L., Zhang, L., Zhao, R.: An on-demand coverage based self-deployment algorithm for big data perception in mobile sensing networks. Futur. Gener. Comput. Syst. 82, 220–234 (2018)
Mahgoub, I.: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems. CRC Press, Boca Raton (2019)
Manju, Chand, S., Kumar, B.: Target coverage heuristic based on learning automata in wireless sensor networks. IET Wirel. Sens. Syst. 8(3), 109–115 (2018)
Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall Inc, USA (1989)
Nedić, A., Liu, J.: Distributed optimization for control. Ann. Rev. Control, Robot. Auton. Syst. 1(1), 77–103 (2018)
Oommen, J., Misra, S.: Cybernetics and learning automata. In: Nof, S. (ed.) Springer Handbook of Automation, pp. 221–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78831-7_12
Qarehkhani, A., Golsorkhtabaramiri, M., Mohamadi, H., Yadollahzadeh-Tabari, M.: Solving the target coverage problem in multilevel wireless networks capable of adjusting the sensing angle using continuous learning automata. IET Commun. 16(2), 151–163 (2022)
Upreti, R., Rauniyar, A., Kunwar, J., Haugerud, H., Engelstad, P., Yazidi, A.: Adaptive pursuit learning for energy-efficient target coverage in wireless sensor networks. Concurrency Comput. Pract. Exp. 34(7), e5975 (2022)
Yetgin, H., Cheung, K.T.K., El-Hajjar, M., Hanzo, L.H.: A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Commun. Surv. Tutorials 19(2), 828–854 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gąsior, J. (2025). Learning Automata Strategies for Prolonging Lifetime of Wireless Sensor Networks. In: Mathieu, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. PAAMS 2024. Lecture Notes in Computer Science(), vol 15157. Springer, Cham. https://doi.org/10.1007/978-3-031-70415-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-70415-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70414-7
Online ISBN: 978-3-031-70415-4
eBook Packages: Computer ScienceComputer Science (R0)