Skip to main content

A Decentralized Agent-Based Model for Crisis Events Using Embedded Systems

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection (PAAMS 2024)

Abstract

Multi-agent systems (MAS) applied to Embedded Systems enable cognitive agents to act in the physical world. However, the application of these systems has been little explored to automate communication during crisis events. With this approach, it would be possible to help collect real-time data and deploy rescue forces in risky locations. This paper describes a decentralized, proactive, and agent-based communication model. To validate the proposal, we applied our approach to a physical prototype of smart city devices. In this scenario, we include the interaction of different MAS in a simulation’s flood scenario. The results show the architecture’s effectiveness in collecting real-time data, providing a reliable, low-cost way to integrate citizens and governments during crises. The architecture is a promising approach for crisis management applications that takes advantage of the autonomous behavior of agents in MAS, improving the obtaining of subsidies to feed systems in smart cities and assisting decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://papers.chon.group/PAAMS/2024/DARC/.

References

  1. Blaikie, P., Cannon, T., Davis, I., Wisner, B.: At Risk: Natural Hazards, People’s Vulnerability and Disasters. Routledge (2014). https://doi.org/10.4324/9780203714775

  2. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164. Springer, Heidelberg (2006). https://doi.org/10.1007/11750734_9

    Chapter  Google Scholar 

  3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley, Hoboken (2007)

    Book  Google Scholar 

  4. Brandão, F.C., Lima, M.A.T., Pantoja, C.E., Zahn, J., Viterbo, J.: Engineering approaches for programming agent-based IoT objects using the resource management architecture. Sensors 21(23), 8110 (2021). https://doi.org/10.3390/s21238110

    Article  Google Scholar 

  5. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4(3), 349–355 (1988). https://doi.org/10.1111/j.1467-8640.1988.tb00284.x

    Article  Google Scholar 

  6. Brouwer, T.: Potential of Twitter derived flood maps: comparing interpolation methods and assesing uncertainties (2016). http://essay.utwente.nl/71007/

  7. Dottori, F., et al.: Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 8(9), 781–786 (2018). https://doi.org/10.1038/s41558-018-0257-z

    Article  Google Scholar 

  8. Endler, M., et al.: ContextNet: context reasoning and sharing middleware for large-scale pervasive collaboration and social networking. In: PDT 2011. ACM, New York (2011). https://doi.org/10.1145/2088960.2088962

  9. Lazarin, N.M., Pantoja, C.E.: A robotic-agent platform for embedding software agents using raspberry pi and arduino boards. In: Proceedings of the WESAAC 2015, pp. 13–20. UFF, Niterói (2015). http://www2.ic.uff.br/~wesaac2015/Proceedings-WESAAC-2015.pdf

  10. Lazarin, N.M., Pantoja, C.E., Viterbo, J.: Dealing with the unpredictability of physical resources in real-world multi-agent systems. In: Rocha, A.P., Steels, L., van den Herik, J. (eds.) ICAART 2023. LNCS, vol. 14546, pp. 48–71. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55326-4_3

    Chapter  Google Scholar 

  11. Marouane, E.M.: Towards a real time distributed flood early warning system. IJACSA 12(1) (2021). https://doi.org/10.14569/IJACSA.2021.0120162

  12. Matsuki, A., Hatayama, M.: Identification of issues in disaster response to flooding, focusing on the time continuity between residents’ evacuation and rescue activities. IJDRR 95 (2023). https://doi.org/10.1016/j.ijdrr.2023.103841

  13. Mishra, A., Alnahit, A., Campbell, B.: Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities. J. Hydrol. 596, 125707 (2021). https://doi.org/10.1016/j.jhydrol.2020.125707

    Article  Google Scholar 

  14. Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water 10(11) (2018). https://doi.org/10.3390/w10111536

  15. Ojo, M.O., Giordano, S., Procissi, G., Seitanidis, I.N.: A review of low-end, middle-end, and high-end IoT devices. IEEE Access 6, 70528–70554 (2018). https://doi.org/10.1109/ACCESS.2018.2879615

    Article  Google Scholar 

  16. Pantoja, C.E., de Jesus, V.S., Lazarin, N.M., Viterbo, J.: A spin-off version of Jason for IoT and embedded multi-agent systems. In: Naldi, M.C., Bianchi, R.A.C. (eds.) BRACIS 2023. LNCS, pp. 382–396. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45368-7_25

    Chapter  Google Scholar 

  17. Pantoja, C.E., Stabile, M.F., Lazarin, N.M., Sichman, J.S.: ARGO: an extended Jason architecture that facilitates embedded robotic agents programming. In: Baldoni, M., Müller, J.P., Nunes, I., Zalila-Wenkstern, R. (eds.) EMAS 2016. LNCS (LNAI), vol. 10093, pp. 136–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50983-9_8

    Chapter  Google Scholar 

  18. Rafanelli, A., Costantini, S., De Gasperis, G.: A multi-agent-system framework for flooding events. In: Proceedings of the WOA 2022, Genova, pp. 142–151 (2022). https://ceur-ws.org/Vol-3261/paper11.pdf

  19. Rakotoarisoa, M.M., Reulier, R., Delahaye, D.: Agent-based modelling of the evolution of hydro-sedimentary connectivity: the case of flash floods on arable plateaus. Appl. Sci. 13(5) (2023). https://doi.org/10.3390/app13052967

  20. Sasaki, J., Kitsuya, M.: Development and evaluation of regional information sharing system (RISS) for disaster risk reduction. Inf. Syst. Front. 23, 1203–1211 (2021). https://doi.org/10.1007/s10796-020-10076-7

    Article  Google Scholar 

  21. Sichman, J.S.: DEPINT: dependence-based coalition formation in an open multi-agent scenario. J. Artif. Soc. Soc. Simul. 1(2) (1998). https://www.jasss.org/1/2/3.html

  22. Simmonds, J., Gómez, J.A., Ledezma, A.: The role of agent-based modeling and multi-agent systems in flood-based hydrological problems: a brief review. J. Water Clim. Change 11(4), 1580–1602 (2020). https://doi.org/10.2166/wcc.2019.108

    Article  Google Scholar 

  23. de Jesus, V.S., Pantoja, C.E., Manoel, F., Alves, G.V., Viterbo, J., Bezerra, E.: Bio-inspired protocols for embodied multi-agent systems. In: Proceedings of the ICAART 2021, pp. 312–320. SciTePress (2021).https://doi.org/10.5220/0010257803120320

  24. Tingsanchali, T.: Urban flood disaster management. Procedia Eng. 32, 25–37 (2012). https://doi.org/10.1016/j.proeng.2012.01.1233. iSEEC

    Article  Google Scholar 

  25. Vu, T.M., Mishra, A.K.: Nonstationary frequency analysis of the recent extreme precipitation events in the United States. J. Hydrol. 575, 999–1010 (2019). https://doi.org/10.1016/j.jhydrol.2019.05.090

    Article  Google Scholar 

  26. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Chichester (2009)

    Google Scholar 

  27. Yaning, G., Qianwen, W.: Analysis of collaborative co-governance path of public crisis emergency management in an all-media environment. In: Proceedings of the ICMSSE 2021 (2021). https://doi.org/10.1109/ICMSSE53595.2021.00057

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilson Mori Lazarin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazarin, N.M., Alexandre, T., de Paiva, M.M., Pantoja, C.E., Viterbo, J., Bernardini, F. (2025). A Decentralized Agent-Based Model for Crisis Events Using Embedded Systems. In: Mathieu, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. PAAMS 2024. Lecture Notes in Computer Science(), vol 15157. Springer, Cham. https://doi.org/10.1007/978-3-031-70415-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70415-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70414-7

  • Online ISBN: 978-3-031-70415-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics