Abstract
Multi-agent systems (MAS) applied to Embedded Systems enable cognitive agents to act in the physical world. However, the application of these systems has been little explored to automate communication during crisis events. With this approach, it would be possible to help collect real-time data and deploy rescue forces in risky locations. This paper describes a decentralized, proactive, and agent-based communication model. To validate the proposal, we applied our approach to a physical prototype of smart city devices. In this scenario, we include the interaction of different MAS in a simulation’s flood scenario. The results show the architecture’s effectiveness in collecting real-time data, providing a reliable, low-cost way to integrate citizens and governments during crises. The architecture is a promising approach for crisis management applications that takes advantage of the autonomous behavior of agents in MAS, improving the obtaining of subsidies to feed systems in smart cities and assisting decision-making.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blaikie, P., Cannon, T., Davis, I., Wisner, B.: At Risk: Natural Hazards, People’s Vulnerability and Disasters. Routledge (2014). https://doi.org/10.4324/9780203714775
Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164. Springer, Heidelberg (2006). https://doi.org/10.1007/11750734_9
Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley, Hoboken (2007)
Brandão, F.C., Lima, M.A.T., Pantoja, C.E., Zahn, J., Viterbo, J.: Engineering approaches for programming agent-based IoT objects using the resource management architecture. Sensors 21(23), 8110 (2021). https://doi.org/10.3390/s21238110
Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4(3), 349–355 (1988). https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
Brouwer, T.: Potential of Twitter derived flood maps: comparing interpolation methods and assesing uncertainties (2016). http://essay.utwente.nl/71007/
Dottori, F., et al.: Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 8(9), 781–786 (2018). https://doi.org/10.1038/s41558-018-0257-z
Endler, M., et al.: ContextNet: context reasoning and sharing middleware for large-scale pervasive collaboration and social networking. In: PDT 2011. ACM, New York (2011). https://doi.org/10.1145/2088960.2088962
Lazarin, N.M., Pantoja, C.E.: A robotic-agent platform for embedding software agents using raspberry pi and arduino boards. In: Proceedings of the WESAAC 2015, pp. 13–20. UFF, Niterói (2015). http://www2.ic.uff.br/~wesaac2015/Proceedings-WESAAC-2015.pdf
Lazarin, N.M., Pantoja, C.E., Viterbo, J.: Dealing with the unpredictability of physical resources in real-world multi-agent systems. In: Rocha, A.P., Steels, L., van den Herik, J. (eds.) ICAART 2023. LNCS, vol. 14546, pp. 48–71. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55326-4_3
Marouane, E.M.: Towards a real time distributed flood early warning system. IJACSA 12(1) (2021). https://doi.org/10.14569/IJACSA.2021.0120162
Matsuki, A., Hatayama, M.: Identification of issues in disaster response to flooding, focusing on the time continuity between residents’ evacuation and rescue activities. IJDRR 95 (2023). https://doi.org/10.1016/j.ijdrr.2023.103841
Mishra, A., Alnahit, A., Campbell, B.: Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities. J. Hydrol. 596, 125707 (2021). https://doi.org/10.1016/j.jhydrol.2020.125707
Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water 10(11) (2018). https://doi.org/10.3390/w10111536
Ojo, M.O., Giordano, S., Procissi, G., Seitanidis, I.N.: A review of low-end, middle-end, and high-end IoT devices. IEEE Access 6, 70528–70554 (2018). https://doi.org/10.1109/ACCESS.2018.2879615
Pantoja, C.E., de Jesus, V.S., Lazarin, N.M., Viterbo, J.: A spin-off version of Jason for IoT and embedded multi-agent systems. In: Naldi, M.C., Bianchi, R.A.C. (eds.) BRACIS 2023. LNCS, pp. 382–396. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45368-7_25
Pantoja, C.E., Stabile, M.F., Lazarin, N.M., Sichman, J.S.: ARGO: an extended Jason architecture that facilitates embedded robotic agents programming. In: Baldoni, M., Müller, J.P., Nunes, I., Zalila-Wenkstern, R. (eds.) EMAS 2016. LNCS (LNAI), vol. 10093, pp. 136–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50983-9_8
Rafanelli, A., Costantini, S., De Gasperis, G.: A multi-agent-system framework for flooding events. In: Proceedings of the WOA 2022, Genova, pp. 142–151 (2022). https://ceur-ws.org/Vol-3261/paper11.pdf
Rakotoarisoa, M.M., Reulier, R., Delahaye, D.: Agent-based modelling of the evolution of hydro-sedimentary connectivity: the case of flash floods on arable plateaus. Appl. Sci. 13(5) (2023). https://doi.org/10.3390/app13052967
Sasaki, J., Kitsuya, M.: Development and evaluation of regional information sharing system (RISS) for disaster risk reduction. Inf. Syst. Front. 23, 1203–1211 (2021). https://doi.org/10.1007/s10796-020-10076-7
Sichman, J.S.: DEPINT: dependence-based coalition formation in an open multi-agent scenario. J. Artif. Soc. Soc. Simul. 1(2) (1998). https://www.jasss.org/1/2/3.html
Simmonds, J., Gómez, J.A., Ledezma, A.: The role of agent-based modeling and multi-agent systems in flood-based hydrological problems: a brief review. J. Water Clim. Change 11(4), 1580–1602 (2020). https://doi.org/10.2166/wcc.2019.108
de Jesus, V.S., Pantoja, C.E., Manoel, F., Alves, G.V., Viterbo, J., Bezerra, E.: Bio-inspired protocols for embodied multi-agent systems. In: Proceedings of the ICAART 2021, pp. 312–320. SciTePress (2021).https://doi.org/10.5220/0010257803120320
Tingsanchali, T.: Urban flood disaster management. Procedia Eng. 32, 25–37 (2012). https://doi.org/10.1016/j.proeng.2012.01.1233. iSEEC
Vu, T.M., Mishra, A.K.: Nonstationary frequency analysis of the recent extreme precipitation events in the United States. J. Hydrol. 575, 999–1010 (2019). https://doi.org/10.1016/j.jhydrol.2019.05.090
Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Chichester (2009)
Yaning, G., Qianwen, W.: Analysis of collaborative co-governance path of public crisis emergency management in an all-media environment. In: Proceedings of the ICMSSE 2021 (2021). https://doi.org/10.1109/ICMSSE53595.2021.00057
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lazarin, N.M., Alexandre, T., de Paiva, M.M., Pantoja, C.E., Viterbo, J., Bernardini, F. (2025). A Decentralized Agent-Based Model for Crisis Events Using Embedded Systems. In: Mathieu, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. PAAMS 2024. Lecture Notes in Computer Science(), vol 15157. Springer, Cham. https://doi.org/10.1007/978-3-031-70415-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-70415-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70414-7
Online ISBN: 978-3-031-70415-4
eBook Packages: Computer ScienceComputer Science (R0)