Skip to main content

Abstract

Embodied conversational agents (ECAs) are digital characters that behave like humans and utter humanlike dialogues. They are digital twins of a human coach and are cost effective and reachable as compared to human coaches who typically are costly and have long wait times for appointment. To support a healthy life-style, multiple health experts may be needed and our multi-agent digital twins give access to all the coaches in the same session. To provide motivation and encourage following the advice given, these coaches use relational cues in their dialogues including empowerment, working alliance and affirmation cues which are found in actual human-human coaching sessions. Our digital twins simulate three coaches who are experts in diet, physical activity and cognitive health which collaborate with each other, and the human, to provide a holistic coaching experience. This paper reports on our use of Generative AI to modify neutral dialogues with these relational cues. We recommend that both automated and human validation be undertaken in the context of health advice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickmore, T.W., Pfeifer, L.M., Jack, B.W.: Taking the time to care: empowering low health literacy hospital patients with virtual nurse agents. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2009)

    Google Scholar 

  2. Lisetti, C.L., et al.: Building an on-demand avatar-based health intervention for behavior change. In: Twenty-Fifth International FLAIRS Conference (2012)

    Google Scholar 

  3. Abdulrahman, A., Richards, D.: In search of embodied conversational and explainable agents for health behaviour change and adherence. Multimodal Technol. Interact. 5(9), 56 (2021)

    Article  Google Scholar 

  4. Bickmore, T.W.: Unspoken rules of spoken interaction. J. Commun. ACM 47(4), 38–44 (2004)

    Article  Google Scholar 

  5. Lee, U., et al.: Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in English education. Educ. Inf. Technol. 1–33 (2023)

    Google Scholar 

  6. Zhang, T., et al.: BERTScore: evaluating text generation with BERT. arXiv preprint arXiv:1904.09675 (2019)

  7. Johnson, D., et al.: Assessing the Accuracy and Reliability of AI-Generated Medical Responses: An Evaluation of the Chat-GPT Model. PMC10002821 (2023)

    Google Scholar 

  8. Bickmore, T., Gruber, A., Picard, R.: Establishing the computer–patient working alliance in automated health behavior change interventions. Patient Educ. Couns. 59(1), 21–30 (2005)

    Article  Google Scholar 

  9. Bickmore, T.: Relational Agents. [Web Page] 2019 [cited 2019 12th October 2019]; Definition of Relational Agents]. http://www.ccs.neu.edu/home/bickmore/agents/

  10. Baker, S., Richards, D., Caldwell, P.: Relational agents to promote ehealth advice adherence. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014: Trends in Artificial Intelligence, pp. 1010–1015. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_87

    Chapter  Google Scholar 

  11. Yin, L., Ring, L., Bickmore, T.: Using an interactive visual novel to promote patient empowerment through engagement. In: Proceedings of the International Conference on the Foundations of Digital Games, pp. 41–48 (2012)

    Google Scholar 

  12. Salman, S., Richards, D., Dras, M.: Identifying which relational cues users find helpful to allow tailoring of e-coach dialogues. Multimodal Technol. Interact. 7(10), 93 (2023)

    Article  Google Scholar 

  13. Barange, M.: Task-oriented communicative capabilities of agents in collaborative virtual environments for training. Université de Bretagne occidentale-Brest (2015)

    Google Scholar 

  14. Chevaillier, P., et al.: Semantic modeling of virtual environments using mascaret. In: 2012 5th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS). IEEE (2012)

    Google Scholar 

  15. Beinema, T., et al.: Tailoring coaching strategies to users’ motivation in a multi-agent health coaching application. Comput. Hum. Behav. 121, 106787 (2021)

    Article  Google Scholar 

  16. Gámez Díaz, R., et al.: Digital twin coaching for physical activities: a survey. Sensors 20(20), 5936 (2020)

    Article  Google Scholar 

  17. Evseeva, L.I., Shipunova, O.D., Pozdeeva, E.G., Trostinskaya, I.R., Evseev, V.V.: Digital learning as a factor of professional competitive growth. In: Antipova, T., Rocha, Á. (eds.) Digital Science 2019, pp. 241–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37737-3_22

    Chapter  Google Scholar 

  18. Palvia, S., et al.: Online Education: Worldwide Status, Challenges, Trends, and Implications, pp. 233–241. Taylor & Francis (2018)

    Google Scholar 

  19. Kaddour, J., et al.: Challenges and applications of large language models. arXiv preprint arXiv:2307.10169 (2023)

  20. Li, P.: An empirical investigation of pre-trained transformer language models for open-domain dialogue generation. arXiv preprint arXiv:2003.04195 (2020)

  21. Hudeček, V., Dušek, O.: Are large language models all you need for task-oriented dialogue? In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023)

    Google Scholar 

  22. Marvin, G., Hellen, N., Jjingo, D., Nakatumba-Nabende, J.: Prompt engineering in large language models. In: Jeena Jacob, I., Piramuthu, S., Falkowski-Gilski, P. (eds.) Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2023, pp. 387–402. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-7962-2_30

    Chapter  Google Scholar 

  23. Kalyan, K.S.: A survey of GPT-3 family large language models including ChatGPT and GPT-4. Nat. Lang. Process. J. 100048 (2023)

    Google Scholar 

  24. Amaro, I., et al.: AI unreliable answers: a case study on ChatGPT. In: International Conference on Human-Computer Interaction (2023)

    Google Scholar 

  25. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  26. Kocoń, J., et al.: ChatGPT: Jack of All Trades, Master of None, vol. 99. Elsevier (2023)

    Google Scholar 

  27. Abdulrahman, A., Richards, D.: Modelling Working Alliance Using User-aware Explainable Embodied Conversational Agent for Behaviour Change: Framework and Empirical Evaluation (2019)

    Google Scholar 

  28. Fialho, P., Coheur, L., Quaresma, P.: Benchmarking natural language inference and semantic textual similarity for Portuguese. Information 11(10), 484 (2020)

    Article  Google Scholar 

  29. Gaur, C., Kumar, A., Das, S.: Analysis and Design of Document Similarity Using BiLSTM and BERT. In: Shaw, R.N., Paprzycki, M., Ghosh, A. (eds.) ICACIS 2023. CCIS, vol. 1921, pp. 161–167. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45124-9_12

    Chapter  Google Scholar 

  30. Olson, D.: From utterance to text: the bias of language in speech and writing. Harv. Educ. Rev. 47(3), 257–281 (1977)

    Article  Google Scholar 

  31. Bromme, R., Rambow, R., Nückles, M.: Expertise and estimating what other people know: the influence of professional experience and type of knowledge. J. Exp. Psychol. Appl. 7(4), 317 (2001)

    Article  Google Scholar 

  32. Trout, J.D.: Scientific explanation and the sense of understanding. Philos. Sci. 69(2), 212–233 (2002)

    Article  Google Scholar 

  33. Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Richards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salman, S., Richards, D. (2025). Collaborating Digital Twins for Health Coaching. In: Mathieu, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. PAAMS 2024. Lecture Notes in Computer Science(), vol 15157. Springer, Cham. https://doi.org/10.1007/978-3-031-70415-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70415-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70414-7

  • Online ISBN: 978-3-031-70415-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics