Skip to main content

Automatic Transcription of Ottoman Documents Using Deep Learning

  • Conference paper
  • First Online:
Document Analysis Systems (DAS 2024)

Abstract

With the accelerated pace of digitization, a vast collection of Ottoman documents has become accessible to researchers and the general public. However, most users interested in these documents are unable to read them, as the text is Turkish written in the Arabic-Persian script. Manual transcription of such a massive amount of documents is also beyond the capacity of human experts. With the advancements in deep learning, we have been able to provide a solution to the long-standing problem of automatic transcription of printed Ottoman documents. We evaluated three decoding strategies including Word Beam Search that allows to use a recognition lexicon and n-gram statistics during the decoding phase. Furthermore, the effect of lexicon size and coverage and language modelling via character or word n-grams are also evaluated. Using a general purpose large lexicon of the Ottoman era (260K words and 86% test coverage), the performance is measured as \(6.59\%\) character error rate and \(28.46\%\) word error rate on a test set of 6, 828 text lines.

Berrin Yanikoglu—Part of this work was done when Z. Tandoğan, S. D. Akansu and F. Kızılırmak were students at Sabancı University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A demo of the current system is available at https://demos.sabanciuniv.edu.

  2. 2.

    Test subset is publicly available at https://github.com/verimsu/Akis-Dataset.

References

  1. Ottoman Turkish discovery portal. https://www.muteferriqa.com/en. Accessed 10 May 2024

  2. Transkribus Ottoman Turkish print. https://readcoop.eu/model/ottoman-turkish-print/. Accessed 10 May 2024

  3. https://www.osmanlica.com/. Accessed 13 Nov 2022

  4. Ahmad, I., Mahmoud, S.A., Fink, G.A.: Open-vocabulary recognition of machine-printed Arabic text using hidden markov models. Pattern Recognit. 51, 97–111 (2016)

    Article  Google Scholar 

  5. Ahmed, I., Mahmoud, S., Parvez, M.: Printed Arabic text recognition. In: Märgner, V., El Abed, H. (eds.) Guide to OCR for Arabic Scripts, pp. 147–168. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4072-6_7

    Chapter  Google Scholar 

  6. Al-Badr, B., Mahmoud, S.A.: Survey and bibliography of Arabic optical text recognition. Signal Process. 41(1), 49–77 (1995)

    Article  Google Scholar 

  7. Al-Helali, B.M., Mahmoud, S.A.: Arabic online handwriting recognition (AOHR): a survey. ACM Comput. Surv. 50(3), 33:1–33:35 (2017)

    Google Scholar 

  8. Arifoglu, D., Sahin, E., Adiguzel, H., Duygulu, P., Kalpakli, M.: Matching Islamic patterns in Kufic images. Pattern Anal. Appl. 18(3), 601–617 (2015)

    Article  MathSciNet  Google Scholar 

  9. Aydemir, M.S., Aydin, B., Kaya, H., Karliaga, I., Demir, C.: Tübitak Turkish - Ottoman handwritten recognition system. In: 2014 22nd Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey, April 23-25, 2014, pp. 1918–1921. IEEE (2014)

    Google Scholar 

  10. Baierer, K., Büttner, A., Engl, E., Hinrichsen, L., Reul, C.: OCR-D & OCR4all: two complementary approaches for improved OCR of historical sources. In: Sumikawa, Y., Ikejiri, R., Doucet, A., Pfanzelter, E., Hasanuzzaman, M., Dias, G., Milligan, I., Jatowt, A. (eds.) Proceedings of the 6th International Workshop on Computational History (HistoInformatics 2021) co-located with ACM/IEEE Joint Conference on Digital Libraries 2021 (JCDL 2021), Online event, September 30-October 1, 2021. CEUR Workshop Proceedings, vol. 2981. CEUR-WS.org (2021)

    Google Scholar 

  11. Biadsy, F., El-Sana, J., Habash, N.: Online Arabic handwriting recognition using hidden Markov models (2006)

    Google Scholar 

  12. Can, E.F., Duygulu, P.: A line-based representation for matching words in historical manuscripts. Pattern Recognit. Lett. 32(8), 1126–1138 (2011)

    Article  Google Scholar 

  13. Can, E.F., Duygulu, P., Can, F., Kalpakli, M.: Redif extraction in handwritten Ottoman literary texts. In: 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010, pp. 1941–1944. IEEE Computer Society (2010)

    Google Scholar 

  14. Carbune, V., et al.: Fast multi-language LSTM-based online handwriting recognition. Int. J. Document Anal. Recognit. 23(2), 89–102 (2020)

    Article  Google Scholar 

  15. Clanuwat, T., Lamb, A., Kitamoto, A.: Kuronet: pre-modern Japanese Kuzushiji character recognition with deep learning. In: 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, September 20–25, 2019, pp. 607–614. IEEE (2019)

    Google Scholar 

  16. Colutto, S., Kahle, P., Hackl, G., Mühlberger, G.: Transkribus. a platform for automated text recognition and searching of historical documents. In: 15th International Conference on eScience, eScience 2019, San Diego, CA, USA, September 24–27, 2019, pp. 463–466. IEEE (2019)

    Google Scholar 

  17. Dolek, I., Kurt, A.: A deep learning model for Ottoman OCR. Concurr. Comput. Pract. Exp. 34(20) (2022)

    Google Scholar 

  18. Duygulu, P., Arifoglu, D., Kalpakli, M.: Cross-document word matching for segmentation and retrieval of Ottoman divans. Pattern Anal. Appl. 19(3), 647–663 (2016)

    Article  MathSciNet  Google Scholar 

  19. Ergin, M.: Türk Dil Bilgisi. Boğaziçi Yayınları, İstanbul (2020)

    Google Scholar 

  20. Fujitake, M.: DTrOCR: decoder-only transformer for optical character recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 8025–8035 (2024)

    Google Scholar 

  21. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Cohen, W.W., Moore, A.W. (eds.) Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25–29, 2006. ACM International Conference Proceeding Series, vol. 148, pp. 369–376. ACM (2006)

    Google Scholar 

  22. Graves, A., Fernández, S., Liwicki, M., Bunke, H., Schmidhuber, J.: Unconstrained on-line handwriting recognition with recurrent neural networks. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007, pp. 577–584. Curran Associates, Inc. (2007)

    Google Scholar 

  23. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)

    Article  Google Scholar 

  24. Hwang, K., Sung, W.: Character-level incremental speech recognition with recurrent neural networks. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pp. 5335–5339. IEEE (2016)

    Google Scholar 

  25. Jain, M., Mathew, M., Jawahar, C.V.: Unconstrained scene text and video text recognition for Arabic script. In: 1st International Workshop on Arabic Script Analysis and Recognition, ASAR 2017, Nancy, France, April 3-5, 2017, pp. 26–30. IEEE (2017)

    Google Scholar 

  26. Kizilirmak, F., Yanikoglu, B.: CNN-BiLSTM model for english handwriting recognition: Comprehensive evaluation on the IAM dataset. arXiv preprint arXiv:2307.00664 (2023)

  27. Kodym, O., Hradiš, M.: Page layout analysis system for unconstrained historic documents. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 492–506. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9_32

    Chapter  Google Scholar 

  28. Li, M., et al.: TrOCR: transformer-based optical character recognition with pre-trained models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 13094–13102 (2023)

    Google Scholar 

  29. Lorigo, L.M., Govindaraju, V.: Offline Arabic handwriting recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 712–724 (2006)

    Article  Google Scholar 

  30. Martínek, J., Lenc, L., Král, P., Nicolaou, A., Christlein, V.: Hybrid training data for historical text OCR. In: 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, September 20-25, 2019, pp. 565–570. IEEE (2019)

    Google Scholar 

  31. Memon, J., Sami, M., Khan, R.A., Uddin, M.: Handwritten optical character recognition (OCR): a comprehensive systematic literature review (SLR). IEEE Access 8, 142642–142668 (2020)

    Article  Google Scholar 

  32. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text recognition? In: 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 9-15, 2017, pp. 67–72. IEEE (2017)

    Google Scholar 

  33. Rahal, N., Tounsi, M., Hussain, A., Alimi, A.M.: Deep sparse auto-encoder features learning for Arabic text recognition. IEEE Access 9, 18569–18584 (2021)

    Article  Google Scholar 

  34. Sak, H., Güngör, T., Saraclar, M.: Resources for Turkish morphological processing. Lang. Resour. Eval. 45(2), 249–261 (2011)

    Article  Google Scholar 

  35. Scheidl, H., Fiel, S., Sablatnig, R.: Word beam search: a connectionist temporal classification decoding algorithm. In: 16th International Conference on Frontiers in Handwriting Recognition, ICFHR 2018, Niagara Falls, NY, USA, August 5-8, 2018, pp. 253–258. IEEE Computer Society (2018)

    Google Scholar 

  36. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2017)

    Article  Google Scholar 

  37. Slimane, F., Zayene, O., Kanoun, S., Alimi, A.M., Hennebert, J., Ingold, R.: New features for complex Arabic fonts in cascading recognition system. In: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, November 11-15, 2012, pp. 738–741. IEEE Computer Society (2012)

    Google Scholar 

  38. Tasdemir, E.F.B.: Printed Ottoman text recognition using synthetic data and data augmentation. Int. J. Document Anal. Recognit. 26(3), 273–287 (2023)

    Article  Google Scholar 

  39. Tasdemir, E.F.B., Yanikoglu, B.A.: Large vocabulary recognition for online Turkish handwriting with sublexical units. Turkish J. Electr. Eng. Comput. Sci. 26(5), 2218–2233 (2018)

    Article  Google Scholar 

  40. Timurtaş, F.K.: Osmanlı Türkçesi Grameri III. Alfa, İstanbul (2017)

    Google Scholar 

  41. Yanikoglu, B.A., Kholmatov, A.: Turkish handwritten text recognition: a case of agglutinative languages. In: Kanungo, T., Smith, E.H.B., Hu, J., Kantor, P.B. (eds.) Document Recognition and Retrieval X, Santa Clara, California, USA, January 22-23, 2003, Proceedings. SPIE Proceedings, vol. 5010, pp. 227–233. SPIE (2003)

    Google Scholar 

Download references

Acknowledgement

This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 122E399. The authors thank TUBITAK for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berrin Yanikoglu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tasdemir, E.F.B. et al. (2024). Automatic Transcription of Ottoman Documents Using Deep Learning. In: Sfikas, G., Retsinas, G. (eds) Document Analysis Systems. DAS 2024. Lecture Notes in Computer Science, vol 14994. Springer, Cham. https://doi.org/10.1007/978-3-031-70442-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70442-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70441-3

  • Online ISBN: 978-3-031-70442-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics