Skip to main content

Decision-Making in Robotic Process Automation Programming and its Influence on Robotic Process Mining

  • Conference paper
  • First Online:
Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum (BPM 2024)

Abstract

Robotic Process Automation (RPA) technology leverages software bots to automate repetitive tasks within digital environments. While RPA offers significant efficiency gains, current bot programming processes remain heavily manual, requiring extensive effort from developers and domain experts. A current research gap exists in the factors influencing developer decisions during the low-code programming of RPA bots, specifically the choices they make when implementing a selected process. This limited knowledge hinders efforts to automate the bot programming process itself utilizing Robotic Process Mining (RPM) methods. This research study aims to address this knowledge gap by investigating the decision-making of RPA developers. A semi-structured interview study with RPA professionals was conducted to explore the factors influencing developers’ decisions when selecting and translating manual actions into automated processes. The findings from the interview have been the basis to show their implications on RPM tools and to give guidance for the improvement of RPM tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abb, L., Rehse, J.R.: Process-related user interaction logs: state of the art, reference model, and object-centric implementation. Inf. Syst. 102386 (2024). https://doi.org/10.1016/j.is.2024.102386

  2. Agostinelli, S., Marrella, A., Mecella, M.: 11 automated segmentation of user interface logs. In: Czarnecki, C., Fettke, P. (eds.) Robotic Process Automation, pp. 201–222. De Gruyter STEM, Berlin/München/Boston (2021). https://doi.org/10.1515/9783110676693-011

  3. Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: SmartRPA: a tool to reactively synthesize software robots from user interface logs. In: Nurcan, S., Korthaus, A. (eds.) CAiSE 2021. LNBIP, vol. 424, pp. 137–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79108-7_16

    Chapter  Google Scholar 

  4. Axmann, B., Harmoko, H., Herm, L.-V., Janiesch, C.: A framework of cost drivers for robotic process automation projects. In: González Enríquez, J., Debois, S., Fettke, P., Plebani, P., van de Weerd, I., Weber, I. (eds.) BPM 2021. LNBIP, vol. 428, pp. 7–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85867-4_2

    Chapter  Google Scholar 

  5. Baker, S.E., Edwards, R.: How many qualitative interviews is enough? https://eprints.ncrm.ac.uk/id/eprint/2273/4/how_many_interviews.pdf

  6. Celonis: Task mining (2024). https://docs.celonis.com/en/task-mining.html

  7. Charmaz, K.: Constructing Grounded Theory. Introducing Qualitative Methods, 2nd edn. SAGE, Los Angeles (2014)

    Google Scholar 

  8. Dumas, M., La Rosa, M., Volodymyr, L., Polyvyanyy, A., Maggi, F.M.: Robotic process mining. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook, pp. 468–491. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_16

    Chapter  Google Scholar 

  9. Eggert, M., Moulen, T.: Auswahl von geschäftsprozessen zur anwendung von robotic process automation: Vergleich relevanter kriterien aus theorie und praxis. In: D’Onofrio, S., Meinhardt, S. (eds.) Robotik in der Wirtschaftsinformatik, pp. 107–129. Edition HMD, Springer, Wiesbaden (2023). https://doi.org/10.1007/978-3-658-39621-3_6

  10. Herm, L.-V., et al.: A consolidated framework for implementing robotic process automation projects. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 471–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_27

    Chapter  Google Scholar 

  11. Herm, L.V., Janiesch, C., Helm, A., Imgrund, F., Hofmann, A., Winkelmann, A.: A framework for implementing robotic process automation projects. Inf. Syst. e-Bus. Manag. (2023). https://doi.org/10.1007/s10257-022-00553-8

  12. Hofmann, A., Prätori, T., Seubert, F., Wanner, J., Fischer, M., Winkelmann, A.: 4 process selection for RPA projects. In: Czarnecki, C., Fettke, P. (eds.) Robotic Process Automation, pp. 77–90. De Gruyter STEM, Berlin/München/Boston (2021). https://doi.org/10.1515/9783110676693-004

  13. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve the early stages of the robotic process automation lifecycle. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 446–461. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_28

    Chapter  Google Scholar 

  14. Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Identifying candidate routines for robotic process automation from unsegmented UI logs. In: ICPM 2020 Proceedings, pp. 153–160 (2020). https://doi.org/10.1109/ICPM49681.2020.00031

  15. Leno, V., Deviatykh, S., Polyvyanyy, A., La Rosa, M., Dumas, M., Maggi, F.M.: Robidium: automated synthesis of robotic process automation scripts from UI logs (2020)

    Google Scholar 

  16. Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Action logger: enabling process mining for robotic process automation. In: Proceedings of the Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM 2019. CEUR Workshop Proceedings, vol. 2420, p. 5. CEUR-WS (2019). https://hdl.handle.net/10863/19700

  17. Martínez-Rojas, A., Jiménez-Ramírez, A., Enríquez, J.G., Reijers, H.A.: Analyzing variable human actions for robotic process automation. In: Di Ciccio, C., Dijkman, R., Del Río Ortega, A., Rinderle-Ma, S. (eds.) Business Process Management, vol. 13420, pp. 75–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2_8

  18. Noppen, P., Beerepoot, I., van de Weerd, I., Jonker, M., Reijers, H.A.: How to keep RPA maintainable? In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 453–470. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_26

    Chapter  Google Scholar 

  19. Padgett, D.: Qualitative Methods in Social Work Research, 3rd edn. SAGE, Los Angeles (2017)

    Google Scholar 

  20. Prinz, N., Huber, M., Leonhardt, J., Riedinger, C.: Unleash the power of citizen development: leveraging organizational capabilities for successful low-code development platform adoption. In: HICSS 2024. https://hdl.handle.net/10125/106444

  21. Průcha, P., Madzík, P.: Siditer: similarity discovering techniques for robotic process automation. In: Plattfaut, R., Rehse, J.R., et al (eds.) BPM: Blockchain, Robotic Process Automation and Educators Forum, vol. 491, pp. 106–119. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43433-4_7

  22. Runeson, P., Host, M., Reiner, A., Regnell, B.: Case Study Research in Software Engineering: Guidelines and Examples, 1st edn. Wiley, Hoboken (2012). http://site.ebrary.com/lib/alltitles/Doc?id=10538737

  23. Saldaña, J.: The Coding Manual for Qualitative Researchers, 4th edn. SAGE, Los Angeles (2021)

    Google Scholar 

  24. Syed, R., Wynn, M.T.: How to trust a bot: an RPA user perspective. In: Asatiani, A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 147–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58779-6_10

    Chapter  Google Scholar 

  25. UiPath: Uipath: Task mining (2022). https://www.uipath.com/product/task-mining

  26. Völker, M., Weske, M.: Conceptualizing bots in robotic process automation. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Hohenadl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hohenadl, T., Axmann, B., Stummeyer, C. (2024). Decision-Making in Robotic Process Automation Programming and its Influence on Robotic Process Mining. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70445-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70444-4

  • Online ISBN: 978-3-031-70445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics