Skip to main content

Democratizing Robotic Process Mining: A Conceptual Framework for User Actions, Tasks, and RPA Bots

  • Conference paper
  • First Online:
Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum (BPM 2024)

Abstract

While Robotic Process Automation (RPA) enables companies to automate tasks in a comparable lightweight manner, the creation of such automations still requires a considerable manual effort. Robotic Process Mining (RPM) tries to mitigate this effort by analyzing recorded user interactions with a computer system to identify routines automatable by RPA and to derive corresponding RPA scripts. The rapid evolution of both RPA and RPM has led to ambiguities in the terminology used across research, prototypes, and industry. In this paper, we survey and structure the possible types of user interactions that can be recorded by analyzing the literature on RPM and the related field of user behavior mining. Additionally, we aim to foster a unified understanding of the key terms and concepts in RPM by proposing a conceptualization that draws upon ontologies of software, user interfaces, and RPA to embed this comparably new research area. To explore the practical applicability of the conceptualization, we conclude with a number of concrete usage scenarios that strengthen the design and development of RPA bots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Complete list and mapping: https://zenodo.org/doi/10.5281/zenodo.12635361.

  2. 2.

    The concept User is not part of this conceptualization. However, \(\textrm{UI}_{2}\textrm{Ont}\), CSO, and DnS already include the notion of a user so that this aspect can be incorporated in future work.

  3. 3.

    The granularity of log entries created by different tools can vary as they already may perform some post-processing, like combining focussing the UI element and entering text.

References

  1. Abb, L., Rehse, J.R.: Process-related user interaction logs: state of the art, reference model, and object-centric implementation. Inf. Syst. 124, 102386 (2024). https://doi.org/10.1016/j.is.2024.102386

    Article  Google Scholar 

  2. Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: Automated generation of executable RPA scripts from user interface logs. In: Asatiani, A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 116–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58779-6_8

    Chapter  Google Scholar 

  3. Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: SmartRPA: a tool to reactively synthesize software robots from user interface logs. In: Nurcan, S., Korthaus, A. (eds.) CAiSE 2021. LNBIP, vol. 424, pp. 137–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79108-7_16

    Chapter  Google Scholar 

  4. Agostinelli, S., Marrella, A., Mecella, M.: 11 automated segmentation of user interface logs. In: Czarnecki, C., Fettke, P. (eds.) Robotic Process Automation, pp. 201–222. De Gruyter (2021). https://doi.org/10.1515/9783110676693-011

  5. Devaurs, D., Rath, A.S., Lindstaedt, S.N.: Exploiting the user interaction context for automatic task detection. Appl. Artif. Intell. 26(1-2), 58–80 (2012). https://doi.org/10.1080/08839514.2012.629522

  6. Dumas, M., La Rosa, M., Leno, V., Polyvyanyy, A., Maggi, F.M.: Robotic process mining. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 468–491. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_16

  7. Fersht, P., HFS Research: Robotic process automation (RPA) market revenues worldwide from 2017 to 2023. https://www.statista.com/statistics/740440/worldwide-robotic-process-automation-market-size/

  8. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task taxonomies for knowledge content: Metokis deliverable D07 (2004)

    Google Scholar 

  9. Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.P.: Automated robotic process automation: a self-learning approach. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp. 95–112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4_6

    Chapter  Google Scholar 

  10. Kitchenham, B.: Procedures for performing systematic reviews (2004)

    Google Scholar 

  11. Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Discovering executable routine specifications from user interaction logs. http://arxiv.org/pdf/2106.13446v1

  12. Leno, V., Deviatykh, S., Polyvyanyy, A., La Rosa, M., Dumas, M., Maggi, F.M.: Robidium: automated synthesis of robotic process automation scripts from UI logs. In: van der Aalst, W.M.P., et al. (eds.) BPM 2020 Best Dissertation Award, Doctoral Consortium, and Demonstration & Resources Track. CEUR Workshop Proceedings, vol. 2673, pp. 102–106. CEUR-WS.org (2020)

    Google Scholar 

  13. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63, 301–314 (2021). https://doi.org/10.1007/s12599-020-00641-4

    Article  Google Scholar 

  14. Leno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., Maggi, F.M.: Action logger: enabling process mining for robotic process automation. In: Depaire, B., et al. (eds.) BPM 2019 Dissertation Award, Doctoral Consortium, and Demonstration Track. CEUR Workshop Proceedings, vol. 2420, pp. 124–128. CEUR-WS.org (2019)

    Google Scholar 

  15. Linn, C., Zimmermann, P., Werth, D.: Desktop activity mining - a new level of detail in mining business processes. In: Czarnecki, C., et al. (eds.) Workshops der INFORMATIK 2018. LNI, Köllen Druck+Verlag GmbH (2018). https://dl.gi.de/handle/20.500.12116/17225

  16. Mayr, A., Herm, L.V., Wanner, J., Janiesch, C.: Applications and challenges of task mining: a literature review. In: Beck, R., et al. (eds.) 30th European Conference on Information Systems (ECIS 2022). AIS (2022). https://aisel.aisnet.org/ecis2022_rip/55

  17. Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its application in information systems. Eur. J. Inf. Syst. 22(3), 336–359 (2013). https://doi.org/10.1057/ejis.2012.26

    Article  Google Scholar 

  18. Oberle, D., Grimm, S., Staab, S.: An ontology for software. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 383–402. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_17

    Chapter  Google Scholar 

  19. Oliver, N., Smith, G., Thakkar, C., Surendran, A.C.: Swish: semantic analysis of window titles and switching history. In: Edmonds, E., et al. (eds.) Proceedings of the 11th International Conference on Intelligent User Interfaces, pp. 194–201. ACM, New York (2006). https://doi.org/10.1145/1111449.1111492

  20. Park, S., Lee, S.: Diaganalyzer: user behavior analysis and visualization using windows diagnostics logs. Forensic Sci. Int. Digit. Investig. 43, 301450 (2022). https://doi.org/10.1016/j.fsidi.2022.301450

  21. Paulheim, H.: Ontology-Based Application Integration. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1430-8

  22. Plattfaut, R., Borghoff, V., Godefroid, M., Koch, J., Trampler, M., Coners, A.: The critical success factors for robotic process automation. Comput. Ind. 138, 103646 (2022). https://doi.org/10.1016/j.compind.2022.103646

  23. Průcha, P., Madzík, P.: SiDiTeR: Similarity discovering techniques for robotic process automation. In: Köpke, J., et al. (eds.) Business Process Management: Blockchain, Robotic Process Automation and Educators Forum. LNBIP, vol. 491, pp. 106–119. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43433-4_7

  24. Rebmann, A., van der Aa, H.: Unsupervised task recognition from user interaction streams. In: Indulska, M., et al. (eds.) Advanced Information Systems Engineering. LNCS, vol. 13901, pp. 141–157. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34560-9_9

  25. Rehse, J.R., Abb, L., Berg, G., Bormann, C., Kampik, T., Warmuth, C.: User behavior mining. Bus. Inf. Syst. Eng. (2024). https://doi.org/10.1007/s12599-023-00848-1

    Article  Google Scholar 

  26. Schmidt, B., Kastl, J., Stoitsev, T., Mühlhäuser, M.: Hierarchical task instance mining in interaction histories. In: Protopsaltis, A., et al. (eds.) Proceedings of the 29th ACM International Conference on Design of Communication, pp. 99–106. ACM, New York (2011). https://doi.org/10.1145/2038476.2038495

  27. Syed, R., et al.: Robotic process automation: contemporary themes and challenges. Comput. Ind. 115, 103162 (2020). https://doi.org/10.1016/j.compind.2019.103162

  28. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60(4), 269–272 (2018). https://doi.org/10.1007/s12599-018-0542-4

    Article  Google Scholar 

  29. Völker, M., Weske, M.: Conceptualizing bots in robotic process automation. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Hohenadl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hohenadl, T., Völker, M., Stummeyer, C., Weske, M. (2024). Democratizing Robotic Process Mining: A Conceptual Framework for User Actions, Tasks, and RPA Bots. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70445-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70444-4

  • Online ISBN: 978-3-031-70445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics