Skip to main content

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 527))

Included in the following conference series:

  • 568 Accesses

Abstract

In contrast to procedural process models, where every valid execution trace is explicitly modeled, declarative process models (DPMs) implicitly define allowed company behavior using a set of constraints. Related works have identified many challenges humans face when trying to make sense of DPMs, including combinations of constraints, inconsistencies, and the (graphical) notation of declarative constraints themselves. In this work, we provide the foundation for an e-learning approach designed to gradually familiarize users with the modeling language Declare. More specifically, we introduce a comprehensive collection of different types of tasks with increasing levels of difficulty. These tasks cover basic concepts, individual constraints, constraint combinations of different complexity, model behavior, as well as redundancy and inconsistency within DPMs. With this work, we aim to lay the foundation for future interactive applications to support not only teaching but also improving both comprehension and (consistent) declarative process modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Figl, K., Di Ciccio, C., Reijers, H.A.: Do declarative process models help to reduce cognitive biases related to business rules?. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 119–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_9

  2. Di Ciccio, C., Montali, M.: Declarative process specifications: reasoning, discovery, monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. Lecture Notes in Business Information Processing, vol. 448, pp. 108–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_4

  3. Nagel, S., Delfmann, P.: Investigating inconsistency understanding to support interactive inconsistency resolution in declarative process models. In: ECIS 2022 Research-in-Progress Papers (2022)

    Google Scholar 

  4. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

    Article  Google Scholar 

  5. Corea, C., Delfmann, P.: Quasi-inconsistency in declarative process models. In: Hildebrandt, T., van Dongen, B., Röglinger, M., Mendling, J. (eds.) BPM 2019. Lecture Notes in Business Information Processing, vol. 360, pp. 20–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_2

  6. Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: Complexity in declarative process models: Metrics and multi-modal assessment of cognitive load. Expert Syst. Appl. 233, 120924 (2023)

    Google Scholar 

  7. Nagel, S., Delfmann, P.: Exploring cognitive effects of inconsistency characteristics on understanding inconsistencies in declarative process models. In: Proceedings of the 57th Hawaii International Conference on System Sciences (HICSS) (2024)

    Google Scholar 

  8. Abbad Andaloussi, A., Slaats, T., Burattin, A., Hildebrandt, T.T., Weber, B.: Evaluating the understandability of hybrid process model representations using eye tracking: first insights. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 475–481. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_37

    Chapter  Google Scholar 

  9. Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M., Hildebrandt, T.T., Weber, B.: Exploring the understandability of a hybrid process design artifact based on DCR graphs. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) BPMDS/EMMSAD -2019. LNBIP, vol. 352, pp. 69–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20618-5_5

    Chapter  Google Scholar 

  10. Abbad Andaloussi, A., Soffer, P., Slaats, T., Burattin, A., Weber, B.: The impact of modularization on the understandability of declarative process models: a research model. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 133–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_15

    Chapter  Google Scholar 

  11. Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: Assessing the complexity of declarative process models using model-based metrics. In: A Framework for Enhancing the Modeling and Comprehension of Declarative Process Models, pp. 179–204 (2021)

    Google Scholar 

  12. Abbad Andaloussi, A., Zerbato, F., Burattin, A., Slaats, T., Hildebrandt, T.T., Weber, B.: Exploring how users engage with hybrid process artifacts based on declarative process models: a behavioral analysis based on eye-tracking and think-aloud. Softw. Syst. Model. 20(5), 1437–1464 (2020)

    Article  Google Scholar 

  13. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Improving understandability of declarative process models by revealing hidden dependencies. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 83–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_6

  14. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden dependencies in constraint-based declarative process models for improving understandability. Inf. Syst. 74, 40–52 (2018)

    Article  Google Scholar 

  15. Haisjackl, C., et al.: Making sense of declarative process models: common strategies and typical pitfalls. In: Nurcan, S., et al. (eds.) BPMDS EMMSAD 2013 2013. Lecture Notes in Business Information Processing, vol. 147, pp. 2–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38484-4_2

  16. Haisjackl, C., Zugal, S.: Investigating differences between graphical and textual declarative process models. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE 2014. Lecture Notes in Business Information Processing, vol. 178, pp. 194–206. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07869-4_17

  17. Haisjackl, C., et al.: Understanding Declare models: strategies, pitfalls, empirical results. Softw. Syst. Model. 15, 325–352 (2016)

    Article  Google Scholar 

  18. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. Lecture Notes in Business Information Processing, vol. 99, pp. 383–394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_37

  19. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability of declarative process models. In: Halpin, T., et al. (eds.) BPMDS EMMSAD 2011 2011. Lecture Notes in Business Information Processing, vol. 81, pp. 163–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21759-3_12

  20. Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating expressiveness and understandability of hierarchy in declarative business process models. Softw. Syst. Model. 14, 1081–1103 (2015)

    Article  Google Scholar 

  21. Raaijmakers, J.G.W., Shiffrin, R.M.: Models for recall and recognition. Annu. Rev. Psychol. 43, 205–234 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was funded by the Deutsche Forschungsgemeinschaft (grant number DE 1983/9-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Nagel .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagel, S., Delfmann, P. (2024). Towards an E-Learning Approach for Declarative Process Modeling. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70445-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70444-4

  • Online ISBN: 978-3-031-70445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics