Abstract
In contrast to procedural process models, where every valid execution trace is explicitly modeled, declarative process models (DPMs) implicitly define allowed company behavior using a set of constraints. Related works have identified many challenges humans face when trying to make sense of DPMs, including combinations of constraints, inconsistencies, and the (graphical) notation of declarative constraints themselves. In this work, we provide the foundation for an e-learning approach designed to gradually familiarize users with the modeling language Declare. More specifically, we introduce a comprehensive collection of different types of tasks with increasing levels of difficulty. These tasks cover basic concepts, individual constraints, constraint combinations of different complexity, model behavior, as well as redundancy and inconsistency within DPMs. With this work, we aim to lay the foundation for future interactive applications to support not only teaching but also improving both comprehension and (consistent) declarative process modeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Figl, K., Di Ciccio, C., Reijers, H.A.: Do declarative process models help to reduce cognitive biases related to business rules?. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 119–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_9
Di Ciccio, C., Montali, M.: Declarative process specifications: reasoning, discovery, monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. Lecture Notes in Business Information Processing, vol. 448, pp. 108–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_4
Nagel, S., Delfmann, P.: Investigating inconsistency understanding to support interactive inconsistency resolution in declarative process models. In: ECIS 2022 Research-in-Progress Papers (2022)
Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)
Corea, C., Delfmann, P.: Quasi-inconsistency in declarative process models. In: Hildebrandt, T., van Dongen, B., Röglinger, M., Mendling, J. (eds.) BPM 2019. Lecture Notes in Business Information Processing, vol. 360, pp. 20–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_2
Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: Complexity in declarative process models: Metrics and multi-modal assessment of cognitive load. Expert Syst. Appl. 233, 120924 (2023)
Nagel, S., Delfmann, P.: Exploring cognitive effects of inconsistency characteristics on understanding inconsistencies in declarative process models. In: Proceedings of the 57th Hawaii International Conference on System Sciences (HICSS) (2024)
Abbad Andaloussi, A., Slaats, T., Burattin, A., Hildebrandt, T.T., Weber, B.: Evaluating the understandability of hybrid process model representations using eye tracking: first insights. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 475–481. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_37
Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M., Hildebrandt, T.T., Weber, B.: Exploring the understandability of a hybrid process design artifact based on DCR graphs. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) BPMDS/EMMSAD -2019. LNBIP, vol. 352, pp. 69–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20618-5_5
Abbad Andaloussi, A., Soffer, P., Slaats, T., Burattin, A., Weber, B.: The impact of modularization on the understandability of declarative process models: a research model. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 133–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_15
Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: Assessing the complexity of declarative process models using model-based metrics. In: A Framework for Enhancing the Modeling and Comprehension of Declarative Process Models, pp. 179–204 (2021)
Abbad Andaloussi, A., Zerbato, F., Burattin, A., Slaats, T., Hildebrandt, T.T., Weber, B.: Exploring how users engage with hybrid process artifacts based on declarative process models: a behavioral analysis based on eye-tracking and think-aloud. Softw. Syst. Model. 20(5), 1437–1464 (2020)
De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Improving understandability of declarative process models by revealing hidden dependencies. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 83–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_6
De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden dependencies in constraint-based declarative process models for improving understandability. Inf. Syst. 74, 40–52 (2018)
Haisjackl, C., et al.: Making sense of declarative process models: common strategies and typical pitfalls. In: Nurcan, S., et al. (eds.) BPMDS EMMSAD 2013 2013. Lecture Notes in Business Information Processing, vol. 147, pp. 2–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38484-4_2
Haisjackl, C., Zugal, S.: Investigating differences between graphical and textual declarative process models. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE 2014. Lecture Notes in Business Information Processing, vol. 178, pp. 194–206. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07869-4_17
Haisjackl, C., et al.: Understanding Declare models: strategies, pitfalls, empirical results. Softw. Syst. Model. 15, 325–352 (2016)
Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. Lecture Notes in Business Information Processing, vol. 99, pp. 383–394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_37
Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability of declarative process models. In: Halpin, T., et al. (eds.) BPMDS EMMSAD 2011 2011. Lecture Notes in Business Information Processing, vol. 81, pp. 163–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21759-3_12
Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating expressiveness and understandability of hierarchy in declarative business process models. Softw. Syst. Model. 14, 1081–1103 (2015)
Raaijmakers, J.G.W., Shiffrin, R.M.: Models for recall and recognition. Annu. Rev. Psychol. 43, 205–234 (1992)
Acknowledgments
This paper was funded by the Deutsche Forschungsgemeinschaft (grant number DE 1983/9-3).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nagel, S., Delfmann, P. (2024). Towards an E-Learning Approach for Declarative Process Modeling. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-70445-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70444-4
Online ISBN: 978-3-031-70445-1
eBook Packages: Computer ScienceComputer Science (R0)