Skip to main content

Abstract

In our work, we refine the application of blockchain technology for managing inter-organizational business processes without a centralized authority, addressing the issue of data privacy inherent in public blockchains. Building on the proposal of Toldi and Kocsis, which involves recording encrypted instance data and reference hashes in smart contracts and aligning with business process models through zero-knowledge succinct arguments of knowledge (zk-SNARKs), we are able to improve several key metrics. Our approach introduces an efficient blockchain-based system tailored for business process modeling notation (BPMN) process choreographies. Unlike many other approaches in the field of blockchain-based process enactment, our system eliminates the need to deploy process-specific smart contracts. This alteration reduces the cost of instantiating new medium-sized process models by at least 88% compared to Toldi and Kocsis. Additionally, we achieve a greater than 99% reduction in the time required to generate conformance proofs. These enhancements result in a more cost-effective and streamlined approach for the private execution of choreographies on a blockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/fstiehle/chorpiler.

  2. 2.

    https://github.com/OskarPetto/zk-choreographies.

  3. 3.

    https://hardhat.org/.

References

  1. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy, pp. 287–304 (2015). https://doi.org/10.1109/SP.2015.25

  2. Carminati, B., Rondanini, C., Ferrari, E.: Confidential business process execution on blockchain. In: 2018 IEEE International Conference on Web Services (ICWS), pp. 58–65 (2018). https://doi.org/10.1109/ICWS.2018.00015

  3. Compagnucci, I., Corradini, F., Fornari, F., Re, B.: A study on the usage of the BPMN notation for designing process collaboration, choreography, and conversation models. Bus. Inf. Syst. Eng. (2023). https://doi.org/10.1007/s12599-023-00818-7

    Article  Google Scholar 

  4. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: A flexible approach to multi-party business process execution on blockchain. Futur. Gener. Comput. Syst. 147, 219–234 (2023). https://doi.org/10.1016/j.future.2023.05.006

    Article  Google Scholar 

  5. Decker, G., Weske, M.: Local enforceability in interaction Petri nets. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_22

    Chapter  Google Scholar 

  6. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008). https://doi.org/10.1016/j.infsof.2008.02.006

    Article  Google Scholar 

  7. Fridgen, G., Radszuwill, S., Urbach, N., Utz, L.: Cross-organizational workflow management using blockchain technology - towards applicability, auditability, and automation. In: Hawaii International Conference on System Sciences (2018). https://doi.org/10.24251/HICSS.2018.444

  8. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge (2019)

    Google Scholar 

  9. García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_8

    Chapter  Google Scholar 

  10. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  11. Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-Hani, A.: Blockchain smart contracts: applications, challenges, and future trends. Peer-to-Peer Netw. Appl. 14(5), 2901–2925 (2021). https://doi.org/10.1007/s12083-021-01127-0

    Article  Google Scholar 

  12. Ladleif, J., Weske, M., Weber, I.: Modeling and enforcing blockchain-based choreographies. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_7

    Chapter  Google Scholar 

  13. López-Pintado, O., Dumas, M., García-Bañuelos, L., Weber, I.: Interpreted execution of business process models on blockchain. In: 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC), pp. 206–215 (2019). https://doi.org/10.1109/EDOC.2019.00033

  14. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: a business process execution engine on the Ethereum blockchain. Softw. Pract. Experience 49(7), 1162–1193 (2019). https://doi.org/10.1002/spe.2702

  15. Lu, Q., et al.: Integrated model-driven engineering of blockchain applications for business processes and asset management. Softw. Pract. Experience 51(5), 1059–1079 (2021). https://doi.org/10.1002/spe.2931

  16. Marangone, E., Di Ciccio, C., Friolo, D., Nemmi, E.N., Venturi, D., Weber, I.: MARTSIA: enabling data confidentiality for blockchain-based process execution. In: Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M., Moreira, J. (eds.) EDOC 2023. LNCS, vol. 14367, pp. 58–76. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-46587-1_4

    Chapter  Google Scholar 

  17. Marangone, E., Di Ciccio, C., Weber, I.: Fine-grained data access control for collaborative process execution on blockchain. In: Marrella, A., et al. (eds.) BPM 2022. LNBIP, vol. 459, pp. 51–67. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16168-1_4

    Chapter  Google Scholar 

  18. Mendling, J., et al.: Blockchains for business process management - challenges and opportunities. ACM Trans. Manag. Inf. Syst. 9(1), 4:1–4:16 (2018). https://doi.org/10.1145/3183367

  19. Partala, J., Nguyen, T.H., Pirttikangas, S.: Non-interactive zero-knowledge for blockchain: a survey. IEEE Access 8, 227945–227961 (2020). https://doi.org/10.1109/ACCESS.2020.3046025

    Article  Google Scholar 

  20. Stiehle, F., Weber, I.: Blockchain for business process enactment: a taxonomy and systematic literature review. In: Marrella, A., et al. (eds.) BPM 2022. LNBIP, vol. 459, pp. 5–20. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16168-1_1

    Chapter  Google Scholar 

  21. Stiehle, F., Weber, I.: Process channels: a new layer for process enactment based on blockchain state channels. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) BPM 2023. LNCS, vol. 14159, pp. 198–215. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41620-0_12

    Chapter  Google Scholar 

  22. Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends® Priv. Secur. 4(2–4), 117–660 (2022). https://doi.org/10.1561/3300000030

  23. Thibault, L.T., Sarry, T., Hafid, A.S.: Blockchain scaling using rollups: a comprehensive survey. IEEE Access 10, 93039–93054 (2022). https://doi.org/10.1109/ACCESS.2022.3200051

    Article  Google Scholar 

  24. Toldi, B.Á., Kocsis, I.: Blockchain-based, confidentiality-preserving orchestration of collaborative workflows. Infocommunications J. 15(3), 72–81 (2023). https://doi.org/10.36244/ICJ.2023.3.8

  25. Toots, A.: Zero-knowledge proofs for business processes. Master’s thesis, University of Tartu (2020)

    Google Scholar 

  26. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

    Chapter  Google Scholar 

Download references

Acknowledgements

This research has been partially supported and funded by the Austrian Research Promotion Agency (FFG) for the research projects “DiCYCLE – Reconsidering digital deconstruction, reuse and recycle processes using BIM and Blockchain” and “USEFLEDS - Unleashing Sector-coupling Flexibility by means of an Energy Data Space” under the contract number 886960 and 905128, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Petto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petto, O., Preindl, T., Kjäer, M. (2024). Interpreted and Confidential Execution of Process Choreographies on a Blockchain. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70445-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70444-4

  • Online ISBN: 978-3-031-70445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics