Skip to main content

Abstract

In blockchain networks, transaction data is accessible to all participants by design and hence verifiable. This verifiability feature of data stored on the ledger by any participant fosters trust within data, especially in uncertain environments. However, the public nature of onchain data imposes limitations across various scenarios as subsets of data should be kept private. Zero-knowledge proofs (ZKPs) have emerged as a solution within the literature to overcome this issue. The raw data is not published onchain, only a proof of knowledge of this data is. Hence, the blockchain is used as a trustworthy means for proof verification without requiring data disclosure. Despite their effective use in many scenarios, the formalization of zero-knowledge proof techniques within blockchain settings remains under-explored in current literature, and makes their integration difficult for non-expert blockchain practitioners due to the plurality and complexity of zero knowledge proofs. Software engineering patterns are used in the literature to formalize recurring software engineering practices stemming from the literature and experience of practitioners. Several patterns have been proposed to formalize blockchain-based architecture practices. However, no blockchain patterns tailored to confidential proofs using ZKPs have been designed in the literature. Hence, this paper aims to address this gap by formalizing key blockchain patterns relying on ZKP to handle secure proof verification identified in the literature. We formalize a general pattern called Secure Proof Verification pattern and three related sub-patterns, two of them focusing on efficient or trustless proof verification, and one specifically designed for interval membership verification to aid practitioners in selecting the most suitable non-interactive ZKP design for a blockchain-based application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A succinct proof is a cryptographic construct that enables the verification of complex computations or statements using a compact proof size, typically much smaller than the original computation.

  2. 2.

    Another ZKP building on Hiding queries to polynomials are Multi-use circuits (Reducing computational problems into arithmetic circuits). However, no scheme has been identified for a blockchain use.

  3. 3.

    Two advantages from using hash functions: (1) quantum resistance, (2) no trusted set-up (more transparent and auditable than zk-SNARKs) [3, 8, 31].

  4. 4.

    List of identified STARK libraries at the time of writing: libSTARK, STARKware STARKDEX alpha, STARKExchange, distaff, Cairo.

References

  1. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford (1977)

    Google Scholar 

  2. Alexander, C.: The Timeless Way of Building, vol. 1. Oxford University Press, New york (1979)

    Google Scholar 

  3. Asher, M.: Zero-Knowledge Proofs: STARKs vs SNARKs (2021). https://consensys.io/blog/zero-knowledge-proofs-starks-vs-snarks. Accessed 10 Oct 2023

  4. Ayub, M., Saleem, T., Janjua, M., Ahmad, T.: Storage state analysis and extraction of ethereum blockchain smart contracts. ACM TOSEM 32(3), 1–32 (2023)

    Article  Google Scholar 

  5. Azgad-Tromer, S., Garcia, J., Tromer, E.: The case for on chain privacy and compliance. Stanford J. Blockchain Law Policy 6(2) (2023)

    Google Scholar 

  6. Bai, T., Hu, Y., He, J., Fan, H., An, Z.: Health-zkIDM: a healthcare identity system based on fabric blockchain and zero-knowledge proof. Sensors 22(20), 7716 (2022)

    Article  Google Scholar 

  7. Bandara, H.D., Xu, X., Weber, I.: Patterns for blockchain data migration. In: EuroPlop, pp. 1–19 (2020)

    Google Scholar 

  8. Ben-Sasson, E.: A Cambrian explosion of crypto proofs. NAKAMOTO 8 (2020)

    Google Scholar 

  9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: IEEE SP, pp. 459–474. IEEE (2014)

    Google Scholar 

  10. Benedetti, A., Henry, T., Tucci-Piergiovanni, S.: Gas cost analysis of proxy and diamond patterns: towards trusted smart contract engineering in EVM blockchains. In: FC - WTSC (2024, in press)

    Google Scholar 

  11. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger fabric with secure multiparty computation. IBM J. Res. Dev. 63(2/3), 3–1 (2019)

    Article  Google Scholar 

  12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: IEEE SP, pp. 315–334. IEEE (2018)

    Google Scholar 

  13. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_15

    Chapter  Google Scholar 

  14. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_14

    Chapter  Google Scholar 

  15. Chalkias, K., Cohen, S., Lewi, K., Moezinia, F., Romailler, Y.: Hashwires: hyperefficient credential-based range proofs. Cryptology ePrint Archive, Paper 2021/297 (2021)

    Google Scholar 

  16. Chen, C.L., Deng, Y.Y., Weng, W., Sun, H., Zhou, M.: A blockchain-based secure inter-hospital EMR sharing system. Appl. Sci. 10(14), 4958 (2020)

    Article  Google Scholar 

  17. Chia, S.Y., Xu, X., Paik, H.Y., Zhu, L.: Analysis of privacy patterns from an architectural perspective. In: ICSA-C, pp. 60–67. IEEE (2022)

    Google Scholar 

  18. Circularise: Take control of your supply chain with digital product passports (2023). https://www.circularise.com/dpp. Accessed 10 Mar 2023

  19. Deng, C., et al.: A survey on range proof and its applications on blockchain. In: CyberC, pp. 1–8. IEEE (2019)

    Google Scholar 

  20. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computation and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_1

    Chapter  Google Scholar 

  21. Eberhardt, J., Tai, S.: Zokrates-scalable privacy-preserving off-chain computations. In: iThings. IEEE (2018)

    Google Scholar 

  22. Erler, C., Schinle, M., Dietrich, M., Stork, W.: Decision model to design a blockchain-based system for storing sensitive health data. In: ECIS (2022)

    Google Scholar 

  23. Ernstberger, J., Chaliasos, S., Zhou, L., Jovanovic, P., Gervais, A.: Do you need a zero knowledge proof? Cryptology ePrint Archive (2024)

    Google Scholar 

  24. Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 126, 45–58 (2019)

    Article  Google Scholar 

  25. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature and conducting multivocal literature reviews in software engineering. Inf. Soft. Technol. 106 (2019)

    Google Scholar 

  26. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in np have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)

    Article  MathSciNet  Google Scholar 

  27. Huynh, T.T., Nguyen, T.D., Tan, H.: A survey on security and privacy issues of blockchain technology. In: 2019 International Conference on System Science and Engineering (ICSSE), pp. 362–367. IEEE (2019)

    Google Scholar 

  28. Konkin, A., Zapechnikov, S.: Privacy methods and zero-knowledge poof for corporate blockchain. Procedia Comput. Sci. 190, 471–478 (2021)

    Article  Google Scholar 

  29. Lavaur, T., Lacan, J., Chanel, C.P.: Enabling blockchain services for IoE with zk-rollups. Sensors (2022)

    Google Scholar 

  30. Morais, E., Koens, T., Van Wijk, C., Koren, A.: A survey on zero knowledge range proofs and applications. SN Appl. Sci. 1, 1–17 (2019)

    Article  Google Scholar 

  31. Márquez Solís, S.: Zero trust chain: a design pattern for improved interoperability and security in polkadot. arXiv preprint arXiv:2304.14730 (2023)

  32. Nitulescu, A.: zk-snarks: a gentle introduction (2020)

    Google Scholar 

  33. Open Zeppelin: Cairo contracts (2024). https://github.com/OpenZeppelin/cairo-contracts

  34. Oude Roelink, B., El-Hajj, M., Sarmah, D.: Systematic review: comparing zk-snark, zk-stark, and bulletproof protocols for privacy-preserving authentication. Secur. Priv. (2024)

    Google Scholar 

  35. Partisia Blockchain Foundation: Documentation (2023). https://partisiablockchain.gitlab.io/

  36. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software engineering: challenges and new directions. In: ICSE-C, pp. 169–171. IEEE (2017)

    Google Scholar 

  37. Qi, H., Xu, M., Yu, D., Cheng, X.: SoK: privacy-preserving smart contract. High-Confidence Comput. 4(1), 100183 (2024)

    Article  Google Scholar 

  38. Quisquater, J.-J., et al.: How to explain zero-knowledge protocols to your children. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 628–631. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_60

    Chapter  Google Scholar 

  39. Sedlmeir, J., Lautenschlager, J., Fridgen, G., Urbach, N.: The transparency challenge of blockchain in organizations. Electron. Mark. 32(3), 1779–1794 (2022)

    Article  Google Scholar 

  40. Singh, A., et al.: Blockchain smart contracts formalization: approaches and challenges to address vulnerabilities. Comput. Secur. 88, 101654 (2020)

    Article  Google Scholar 

  41. Singh, J.: zk-STARKs vs. zk-SNARKs explained (2022). https://cointelegraph.com/explained/zk-starks-vs-zk-snarks-explained. Accessed 04 July 024

  42. Six, N., Herbaut, N., Salinesi, C.: Blockchain software patterns for the design of decentralized applications: a systematic literature review. Blockchain: Res. Appl. 3(2), 100061 (2022)

    Google Scholar 

  43. Starkware: Hello, cairo! (2020). https://medium.com/starkware/hello-cairo-3cb43b13b209

  44. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9) (1997)

    Google Scholar 

  45. Wang, H., et al.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352 (2018)

    Article  Google Scholar 

  46. Xie, T., et al.: zkbridge: trustless cross-chain bridges made practical. In: ACM SIGSAC (2022)

    Google Scholar 

  47. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-based applications. In: Proceedings of the 23rd European Conference on Pattern Languages of Programs, pp. 1–20 (2018)

    Google Scholar 

  48. Xu, Z., Chen, L.: DIV: resolving the dynamic issues of zero-knowledge set membership proof in the blockchain. In: ACM SIGMOD, pp. 2036–2048 (2021)

    Google Scholar 

  49. Yang, X., Li, W.: A zero-knowledge-proof-based digital identity management scheme in blockchain. Comput. Secur. 99, 102050 (2020)

    Article  Google Scholar 

  50. Zeiselmair, A., Steinkopf, B., Gallersdörfer, U., et al.: Analysis and application of verifiable computation techniques in blockchain systems for the energy sector. Front. Blockchain (2021)

    Google Scholar 

  51. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM CSUR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiphaine Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henry, T., Tucci-Piergiovanni, S. (2024). Secure Proof Verification Blockchain Patterns. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70445-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70444-4

  • Online ISBN: 978-3-031-70445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics