Skip to main content

Janus-Faced Handwritten Signature Attack: A Clash Between a Handwritten Signature Duplicator and a Writer Independent, Metric Meta-learning Offline Signature Verifier

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2024 (ICDAR 2024)

Abstract

Signature verification is a popular research area. SigmML, a new system for offline, writer-independent verification, has been developed, offering a unique approach outside typical Euclidean network learning methods. This verifier operates in the space of symmetric positive definite matrices and has demonstrated promising preliminary state-of-the-art results in intra and cross lingual dataset experiments. However, any offline automatic signature verifier faces a potential vulnerability: susceptibility to massive attacks using synthetic signatures. This concern becomes more pronounced given the significant advancements in handwritten image generation techniques. To evaluate the threat level of synthetic attacks to the original version of SigmML, we assess its performance under several attack profiles involving the duplication of synthetically questioned signatures, which are used during the test stage. These profiles advance the threat level to the SigmML verifier by refining the output of the duplicator with a quality control mechanism which intuitively adapts the a-priori knowledge of the intra-variability of each writer. In our experiments, we considered signatures written in various countries and styles, including specimens in Western, Devanagari, and Bengali scripts. Quantitatively, we demonstrate this delicate security issue in the context of signature verification. The proposed attack profiles significantly degrade the performance of SigmML, surpassing the results obtained against skilled forgery experiments by more than double.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Archibald, T., Poggemann, M., Chan, A., Martinez, T.: Trace: a differentiable approach to line-level stroke recovery for offline handwritten text. In: Llados, J., Lopresti, D., Uchida, S. (eds.) Document Analysis and Recognition–ICDAR 2021: 16th International Conference, Lausanne, Switzerland, 5–10 September 2021, Proceedings, Part III 16, pp. 414–429. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86334-0_27

  2. Bhunia, A.K., Khan, S., Cholakkal, H., Anwer, R.M., Khan, F.S., Shah, M.: Handwriting transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1086–1094 (2021)

    Google Scholar 

  3. Diaz, M., Ferrer, M.A., Eskander, G.S., Sabourin, R.: Generation of duplicated off-line signature images for verification systems. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 951–964 (2016)

    Article  Google Scholar 

  4. Diaz, M., Ferrer, M.A., Impedovo, D., Malik, M.I., Pirlo, G., Plamondon, R.: A perspective analysis of handwritten signature technology. ACM Comput. Surv. (CSUR) 51(6), 1–39 (2019)

    Article  Google Scholar 

  5. Diaz, M., Ferrer, M.A., Sabourin, R.: Approaching the intra-class variability in multi-script static signature evaluation. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1147–1152. IEEE (2016)

    Google Scholar 

  6. Diaz-Cabrera, M., Ferrer, M.A., Morales, A.: Cognitive inspired model to generate duplicated static signature images. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 61–66. IEEE (2014)

    Google Scholar 

  7. Giazitzis, A., Zois, E.N.: SigmML: metric meta-learning for writer independent offline signature verification in the space of SPD matrices. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6312–6322 (2024)

    Google Scholar 

  8. Hafemann, L.G., Sabourin, R., Oliveira, L.: Characterizing and evaluating adversarial examples for Offline Handwritten Signature Verification. IEEE Trans. Inf. Forensics Secur. 1 (2019). https://doi.org/10.1109/TIFS.2019.2894031

  9. Hamadene, A., Ouahabi, A., Hadid, A.: DeepFakes signatures detection in the handcrafted features space. In: 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 460–466 (2023). https://doi.org/10.1109/ICCVW60793.2023.00052

  10. Kalera, M.K., Srihari, S., Xu, A.: Offline signature verification and identification using distance statistics. Int. J. Pattern Recognit. Artif. Intell. 18(07), 1339–1360 (2004). https://doi.org/10.1142/S0218001404003630

    Article  Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  12. Lashley, K.S.: Basic neural mechanisms in behavior. Psychol. Rev. 37(1), 1 (1930)

    Article  Google Scholar 

  13. Li, H., Li, H., Zhang, H., Yuan, W.: Black-box attack against handwritten signature verification with region-restricted adversarial perturbations. Pattern Recogn. 111, 107689 (2021)

    Article  Google Scholar 

  14. Marcelli, A., Parziale, A., Senatore, R.: Some observations on handwriting from a motor learning perspective. In: AFHA, vol. 1022, pp. 6–10. Citeseer (2013)

    Google Scholar 

  15. Maruyama, T.M., Oliveira, L.S., Britto, A.S., Sabourin, R.: Intrapersonal parameter optimization for offline handwritten signature augmentation. IEEE Trans. Inf. Forensics Secur. 16, 1335–1350 (2020)

    Article  Google Scholar 

  16. Melo, V.K., Bezerra, B.L.D., Impedovo, D., Pirlo, G., Lundgren, A.: Deep learning approach to generate offline handwritten signatures based on online samples. IET Biometrics 8(3), 215–220 (2019)

    Article  Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  18. Pal, S., Alaei, A., Pal, U., Blumenstein, M.: Performance of an off-line signature verification method based on texture features on a large Indic-Script signature dataset. In: 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 72–77, April 2016. https://doi.org/10.1109/DAS.2016.48

  19. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vision 66(1), 41–66 (2006). https://doi.org/10.1007/s11263-005-3222-z

    Article  Google Scholar 

  20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7, https://www.sciencedirect.com/science/article/pii/0377042787901257

  21. Tolosana, R., et al.: ICDAR 2021 competition on on-line signature verification. In: Document Analysis and Recognition–ICDAR 2021: 16th International Conference, Lausanne, Switzerland, 5–10 September 2021, Proceedings, Part IV 16, pp. 723–737. Springer, Cham (2021)

    Google Scholar 

  22. Zois, E.N., Said, S., Tsourounis, D., Alexandridis, A.: Subscripto multiplex: a Riemannian symmetric positive definite strategy for offline signature verification. Pattern Recogn. Lett. 167, 67–74 (2023). https://doi.org/10.1016/j.patrec.2023.02.002, https://www.sciencedirect.com/science/article/pii/S0167865523000259

  23. Zois, E.N., Tsourounis, D., Kalivas, D.: Similarity distance learning on SPD manifold for writer independent offline signature verification. IEEE Trans. Inf. Forensics Secur. 19, 1342–1356 (2023)

    Article  Google Scholar 

  24. Zois, E.N., Tsourounis, D., Theodorakopoulos, I., Kesidis, A.L., Economou, G.: A comprehensive study of sparse representation techniques for offline signature verification. IEEE Trans. Biometrics Behav. Identity Sci. 1(1), 68–81 (2019). https://doi.org/10.1109/TBIOM.2019.2897802

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the PDI2019-109099RB-C41, funded by MICIU/AEI 10.13039/501100011033 and the European Union’s FEDER program, partly by the CajaCanaria and la Caixa (2023DIG05), and partly by the University of West Attica to E. N. Zoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexios Giazitzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giazitzis, A., Diaz, M., Zois, E.N., Ferrer, M.A. (2024). Janus-Faced Handwritten Signature Attack: A Clash Between a Handwritten Signature Duplicator and a Writer Independent, Metric Meta-learning Offline Signature Verifier. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14805. Springer, Cham. https://doi.org/10.1007/978-3-031-70536-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70536-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70535-9

  • Online ISBN: 978-3-031-70536-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics