Skip to main content

Lightweight Human-Like Robotic Leg with Four-Bar Mechanism Joints

  • Conference paper
  • First Online:
Walking Robots into Real World (CLAWAR 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1114))

Included in the following conference series:

  • 256 Accesses

Abstract

This paper presents the design and kinematic modeling of a lightweight 2-D robot leg prototype equipped with four-bar mechanism joints. Leveraging principles from human biomechanics and robotic engineering, the leg design aims to mimic natural human movement patterns while maintaining structural integrity and efficiency. Through a comprehensive kinematic model, we analyze joint angles, velocities, and torques to ensure the leg capability to execute walking and squatting movements. The model parameters are adjusted based on biomechanical considerations and human locomotion data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.tq-group.com/en/products/tq-robodrive/servo-kits/ilm-e50x14/.

  2. 2.

    https://www.eichenberger.com/en/products/ball-screw.

  3. 3.

    https://www.ingeniamc.com/servo-drives/dc/ethercat/everest-s-xcr-e-panel-mount-ethercat-servo-drive/.

  4. 4.

    https://www.ptc.com/en/products/creo.

  5. 5.

    https://www.material4print.de/media/pdf/7e/8c/0d/Data_Sheet_M4P_PET-CF.pdf.

References

  1. Biscarini, A., Contemori, S., Dieni, C.V., Panichi, R.: Joint torques and tibiofemoral joint reaction force in the bodyweight “wall squat” therapeutic exercise. Appl. Sci. 10(9) (2020). https://www.mdpi.com/2076-3417/10/9/3019

  2. Fry, A.C., Smith, J.C., Schilling, B.K.: Effect of knee position on hip and knee torques during the barbell squat. J. Strength Conditioning Res. 17(4), 629–633 (2003)

    Google Scholar 

  3. Fujisawa, H., Suzuki, H., Murakami, K., Kawakami, S., Suzuki, M.: The role of interaction torque and muscle torque in the control of downward squatting. J. Phys. Ther. Sci. 28(2), 613–620 (2016)

    Article  Google Scholar 

  4. Kerrigan, D., Riley, P.O., Nieto, T.J., Croce, U.D.: Knee joint torques: a comparison between women and men during barefoot walking. Archives Phys. Med. Rehabil. 81(9), 1162–1165 (2000). https://www.sciencedirect.com/science/article/pii/S000399930062470X

  5. Lam, S.K., Vujaklija, I.: Joint torque prediction via hybrid neuromusculoskeletal modelling during gait using statistical ground reaction estimates: an exploratory study. Sensors 21(19) (2021). https://www.mdpi.com/1424-8220/21/19/6597

  6. Negrello, F., et al.: Walk-man humanoid lower body design optimization for enhanced physical performance. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824 (2016)

    Google Scholar 

  7. Nejadfard, A., Schütz, S., Mianowski, K., Vonwirth, P., Berns, K.: Moment arm analysis of the biarticular actuators in compliant robotic leg Carl. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 348–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_37

    Chapter  Google Scholar 

  8. Omer, A., Ghorbani, R., Hashimoto, K., Lim, H.O., Takanishi, A.: A novel design for adjustable stiffness artificial tendon for the ankle joint of a bipedal robot: modeling and simulation. Machines 4 (2016). https://www.mdpi.com/2075-1702/4/1/1

  9. Schütz, S., Mianowski, K., Kotting, C., Nejadfard, A., Reichardt, M., Berns, K.: RRLAB SEA–a highly integrated compliant actuator with minimised reflected inertia. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 252–257. IEEE (2016)

    Google Scholar 

  10. Schütz, S.: CARL - a compliant robotic leg designed for human-like bipedal locomotion. Ph.D. thesis, Kaiserslautern, Germany (2019)

    Google Scholar 

  11. Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: Carl – a compliant robotic leg featuring mono- and biarticular actuation. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 289–296 (2017)

    Google Scholar 

  12. Tsagarakis, N., et al.: Walk-man: a high performance humanoid platform for realistic environments. J. Field Robot. 34 (2017)

    Google Scholar 

  13. Wojtusch, J., von Stryk, O.: Humod - a versatile and open database for the investigation, modeling and simulation of human motion dynamics on actuation level (2015)

    Google Scholar 

  14. Zhu, H., Thomas, U.: Mechanical design of a biped robot FORREST and an extended capture-point-based walking pattern generator. Robotics 12(3), 82 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Sivak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sivak, O., Mianowski, K., Vonwirth, P., Berns, K. (2024). Lightweight Human-Like Robotic Leg with Four-Bar Mechanism Joints. In: Berns, K., Tokhi, M.O., Roennau, A., Silva, M.F., Dillmann, R. (eds) Walking Robots into Real World. CLAWAR 2024. Lecture Notes in Networks and Systems, vol 1114. Springer, Cham. https://doi.org/10.1007/978-3-031-70722-3_26

Download citation

Publish with us

Policies and ethics