Skip to main content

Uncertainty Calculation-as-a-Service: Microservice-Based Metrology Applications

  • Conference paper
  • First Online:
Software Architecture (ECSA 2024)

Abstract

The calibration industry faces significant challenges due to its diverse and sophisticated equipment and complex traditional processes. Rapidly advancing technology highlights existing challenges while inspiring the adoption of innovative solutions to meet industry demands. This paper introduces a microservice-based cloud architecture that addresses these difficulties by managing the inherent heterogeneity in the industry. The presented architecture combines various equipment types, communication technologies, and diverse stakeholder expectations into a cohesive system that ensures efficiency and accuracy in calibration processes by utilizing different methods of uncertainty calculation and facilitating the generation of digital calibration certificates (DCCs). Our solution provides a holistic approach to managing data flow from the calibration equipment to the final generation of DCCs, employing cloud-based services in between to process data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

Data sharing does not apply to this paper.

References

  1. Baškarada, S., Nguyen, V., Koronios, A.: Architecting microservices: Practical opportunities and challenges. J. Comput. Inf. Syst. (2020)

    Google Scholar 

  2. Cetinkaya, A., Dogan, A.K., Danaci, E., Oguztuzun, H.: Autorfpower: automatic rf power measurement software for metrological applications. In: 2021 2nd International Informatics and Software Engineering Conference, pp. 1–4. IEEE (2021)

    Google Scholar 

  3. Cetinkaya, A., Kaya, M.C., Danaci, E., Oguztuzun, H.: Uncertainty calculation-as-a-service: an iiot application for automated RF power sensor calibration. In: Proceedings of the IMEKO TC6 International Conference on Metrology and Digital Transformation. IMEKO, Berlin, Germany (2022)

    Google Scholar 

  4. De Lauretis, L.: From monolithic architecture to microservices architecture. In: 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 93–96 (2019). https://doi.org/10.1109/ISSREW.2019.00050

  5. Flask: Flask framework (2024). https://flask.palletsprojects.com/en/3.0.x/. Accessed 25 Apr 2024

  6. Gadelrab, M.S., Abouhogail, R.A.: Towards a new generation of digital calibration certificate: analysis and survey. Measurement 181, 109611 (2021)

    Article  Google Scholar 

  7. Google: Develop and deploy containerized apps using a CI/CD pipeline (2024). https://cloud.google.com/architecture/app-development-and-delivery-with-cloud-code-gcb-cd-and-gke/deployment. Accessed 25 Apr 2024

  8. Google Cloud: Google kubernetes engine (GKE) (2024). https://cloud.google.com/kubernetes-engine. Accessed 25 Apr 2024

  9. Hackel, S., Härtig, F., Hornig, J., Wiedenhöfer, T.: The digital calibration certificate. PTB-Mitteilungen 127(4), 75–81 (2017)

    Google Scholar 

  10. Hackel, S., Schönhals, S., Doering, L., Engel, T., Baumfalk, R.: The digital calibration certificate (DCC) for an end-to-end digital quality infrastructure for industry 4.0. Sci 5(1), 11 (2023)

    Google Scholar 

  11. JCGM 101:2008: Evaluation of measurement data - Supplement 1 to the ’Guide to the expression of uncertainty in measurement’ - Propagation of distributions using a Monte Carlo method (2008). https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf. Accessed 19 Apr 2024

  12. Kaya, M.C., Saeedi Nikoo, M., Schwartz, M.L., Oguztuzun, H.: Internet of measurement things architecture: proof of concept with scope of accreditation. Sensors 20(2) (2020)

    Google Scholar 

  13. Lafarge, T., Possolo, A.: The NIST uncertainty machine. NCSLI Meas. 10(3), 20–27 (2015)

    Article  Google Scholar 

  14. Nikoo, M.S., Kaya, M.C., Schwartz, M.L., Oguztuzun, H.: An MII-aware SoA editor for the industrial internet of things. In: 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT), pp. 213–218. IEEE (2019)

    Google Scholar 

  15. Oppermann, A., Eickelberg, S., Meiborg, M.: Digital transformation: towards process automation in a cloud native architecture. Acta IMEKO 12(1), 1–6 (2023)

    Article  Google Scholar 

  16. RedHat: What is a REST api? (2020). https://www.redhat.com/en/topics/api/what-is-a-rest-api. Accessed 25 Apr 2024

  17. Saeedi Nikoo, M., Kaya, M.C., Schwartz, M.L., Oguztuzun, H.: Internet of measurement things: toward an architectural framework for the calibration industry. In: Mahmood, Z. (ed.) The Internet of Things in the Industrial Sector. CCN, pp. 81–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24892-5_4

    Chapter  Google Scholar 

  18. Varshney, A., et al.: Challenges in sensors technology for industry 4.0 for futuristic metrological applications. Mapan 36(2), 215–226 (2021)

    Google Scholar 

  19. Zeier, M., Hoffmann, J., Wollensack, M.: Metas.unclib-a measurement uncertainty calculator for advanced problems. Metrologia 49(6), 809 (2012)

    Google Scholar 

  20. Zet, C., Dumitriu, G., Fosalau, C., Sarbu, G.C.: Automated calibration and DCC generation system with storage in private permissioned blockchain network. Acta IMEKO 12(1), 1–7 (2023)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Erkan Danaci for his guidance in the metrology and calibration field. This work is supported by the European Partnership on Metrology through the Metrology Partnership Programme under grant agreement No. 22RPT04, entitled “Development of RF and microwave metrology capability II (RFMicrowave2)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Cetinkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cetinkaya, A., Kaya, M.C., Bzuneh, T.B., Oguztuzun, H. (2024). Uncertainty Calculation-as-a-Service: Microservice-Based Metrology Applications. In: Galster, M., Scandurra, P., Mikkonen, T., Oliveira Antonino, P., Nakagawa, E.Y., Navarro, E. (eds) Software Architecture. ECSA 2024. Lecture Notes in Computer Science, vol 14889. Springer, Cham. https://doi.org/10.1007/978-3-031-70797-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70797-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70796-4

  • Online ISBN: 978-3-031-70797-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics