Skip to main content

Wavelength Calibration of Historical Spectrographic Plates with Dynamic Time Warping

  • Conference paper
  • First Online:
Cloud Computing, Big Data and Emerging Topics (JCC-BD&ET 2024)

Abstract

The Facultad de Ciencias Astronómicas y Geofísicas of the Universidad Nacional de La Plata counts with 15,000 spectroscopic records on glass plates with valuable and unique astronomical data.

Currently, processing these plates requires a complex manual process that involves several stages, requiring several hours to process a single plate. In particular, the wavelength calibration requires the determination of the wavelength range in which the data were observed. This is achieved by matching the spectrum of the comparison lamp on the plate to the reference spectrum. Since many times neither the metadata of the lamps nor the physical lamps are available, automating the tasks requires a semi-blind approach that uses simulated data as a reference. However, the simulated data differs significantly from the physical lamps, given that many peaks determined by theoretical calculations are rarely observed in practice, and conversely the physical lamps and spectrograph carry imperfections that cause unexpected peaks.

In this work, we propose an wavelength calibration pipeline that enables automated matching of the wavelength of the comparison lamps via Dynamic Time Warping (DTW) between the samples and simulated data. Our best model achieves a 93% average Intersection-over-Union (IoU) over a set of 32 manually calibrated plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DASCH: Dasch: Digital access to a sky century @ harvard a new look at the temporal universe (2017). http://dasch.rc.fas.harvard.edu/project.php

  2. Dawson, B.H., Shapley, H.: Bright Nova. Harv. College Obs. Announc. Card 637, 2 (1942)

    Google Scholar 

  3. Giorgino, T.: Computing and visualizing dynamic time warping alignments in R: The dtw package. J. Stat. Softw. 31(7), 1–24 (2009). https://doi.org/10.18637/jss.v031.i07. https://www.jstatsoft.org/index.php/jss/article/view/v031i07

  4. Kramida, A., Olsen, K., Ralchenko, Y.: NIST LIBS database. National Institute of Standards and Technology, US Department of Commerce (2019)

    Google Scholar 

  5. Mandel, H., Birkle, K., Demleitner, M., Heidelberg, L.: HDAP – Heidelberg digitized astronomical plates. VO resource provided by the GAVO Data Center (2007). https://doi.org/10.21938/haTEMZmoaCTEK6XZvGU.fQ. http://dc.zah.uni-heidelberg.de/lswscans/res/positions/q/info

  6. Meilán, N.S.: Recuperacion del patrimonio observacional histórico. Bachelor’s thesis, Universidad Nacional de La Plata (2018)

    Google Scholar 

  7. Ponte Ahon, S.A.: Digitalización de placas astronómicas antiguas. Bachelor’s thesis, Universidad Nacional de La Plata (2023)

    Google Scholar 

  8. Ralchenko, Y.: Nist atomic spectra database. Memorie della Societ`a Astronomica Italiana Supplement, v. 8, p. 96 (2005)

    Google Scholar 

  9. Raouph, M., Schrimpf, A., Kroll, P.: Prospect of plate archive photometric calibration by GAIA SED fluxes (2023)

    Google Scholar 

  10. ReTrhOH: Retrhoh — recuperación del trabajo observacional histórico (2019). https://retroh.fcaglp.unlp.edu.ar/astronomia/

  11. Ronchetti, F., et al.: Software inteligente para la digitalización de placas espectroscópicas. In: XXVIII Congreso Argentino de Ciencias de la Computación (CACIC)(La Rioja, 3 al 6 de octubre de 2022) (2023)

    Google Scholar 

  12. Tormene, P., Giorgino, T., Quaglini, S., Stefanelli, M.: Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif. Intell. Med. 45(1), 11–34 (2009). https://doi.org/10.1016/j.artmed.2008.11.007. https://www.sciencedirect.com/science/article/pii/S0933365708001772

  13. Tuvikene, T.: Pyplate repository (2022). https://github.com/astrotuvi/pyplate

  14. UAI: Nro. b3 safeguarding the information in photographic plates (2000). https://www.iau.org/static/publications/ib88.pdf

Download references

Acknowledgements

YJA thank the financial support from the Universidad Nacional de La Plata.

(Proyectos I+D 11/G193 y EG001), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Andres Ponte Ahón .

Editor information

Editors and Affiliations

A Annex: Complete Table of Tested Calibration Settings

A Annex: Complete Table of Tested Calibration Settings

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponte Ahón, S.A. et al. (2025). Wavelength Calibration of Historical Spectrographic Plates with Dynamic Time Warping. In: Naiouf, M., De Giusti, L., Chichizola, F., Libutti, L. (eds) Cloud Computing, Big Data and Emerging Topics. JCC-BD&ET 2024. Communications in Computer and Information Science, vol 2189. Springer, Cham. https://doi.org/10.1007/978-3-031-70807-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70807-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70806-0

  • Online ISBN: 978-3-031-70807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics