Abstract
Due to their structure, metaheuristics such as parallel evolutionary algorithms (PEA) are well suited to be run on parallel and distributed infrastructure, e.g. supercomputers. However, there are still many issues that are not well researched in this context, e.g. existence of delays in HPC-grade implementations of metaheuristics and how they affect the computation itself. The lack of this knowledge may expose the fact, that the power of supercomputers in this context may be not properly used. We want to focus our research on examining such white spots. In the paper we focus on giving the evidence for the existence of delays, showing the differences among them in different island topologies, try to explain their nature and prepare to propose dedicated migration operators considering these observations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
PlatEMO source code http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.
- 5.
- 6.
- 7.
- 8.
Source code of PlatEMO http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.
- 9.
Project homepage: https://gitlab.com/age-agh/age3.
- 10.
- 11.
Pipelining pattern. https://docs.ray.io/en/latest/ray-core/patterns/pipelining.html.
References
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)
Alba, E., Luque, G., Luna, F.: Parallel metaheuristics for workforce planning. J. Math. Model. Algor. 6(3), 509–528 (2007). https://doi.org/10.1007/s10852-007-9058-5
Biełaszek, S., Byrski, A.: On parameters of migration in pea computing. Progress in Polish artificial intelligence research 4, : Łódź University of Technology Press, 2023, nr 2437, p. 491-493 (2023)
Biełaszek, S., Piętak, K., Kisiel-Dorohinicki, M.: New extensions of reproduction operators In solving LABS problem using EMAS Meta-Heuristic. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) Computational Collective Intelligence, pp. 304–316. Springer International Publishing, Cham, Lecture Notes in Computer Science (2021). https://doi.org/10.1007/978-3-030-88081-1_23
Cantu-Paz, E.: On the Effects of Migration on the Fitness Distribution of Parallel Evolutionary Algorithms. No. UCRL-JC-138729 (Apr 2000). https://www.osti.gov/biblio/791479
Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (2000)
Cantú-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and practice 186, 221–238 (Jun 2000). https://doi.org/10.1016/S0045-7825(99)00385-0, iSSN: 00457825 Issue: 2-4 Journal Abbreviation: Computer Methods in Applied Mechanics and Engineering
Crainic, T.G., Hail, N.: Parallel Metaheuristics Applications. Parallel Metaheuristics, p. 447 (2005). https://www.academia.edu/65945140/Parallel_Metaheuristics_Applications
Goldberg, D.: Genetic Algorithms in Search. Addison Wesley, Optimization and Machine Learning (1989)
Lazarova, M., Borovska, P.: Comparison of parallel metaheuristics for solving the TSP, p. 17 (Jan 2008). https://doi.org/10.1145/1500879.1500899
Misaghi, M., Yaghoobi, M.: Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. J. Comput. Design Eng. 6(3), 284–295 (2019). https://doi.org/10.1016/j.jcde.2019.01.001
Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410), pp. 88–92 (Aug 1999)
Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the island model. In: Parallel Computing, Issues 10-11, October-November 2010, vol. 36, pp. 555-571 (1993)
Schaefer, R., Byrski, A., Smolka, M.: The island model as a markov dynamic system. Int. J. Appl. Math. Comput. Sci. 22(4), 971–984 (2012). https://doi.org/10.2478/V10006-012-0072-Z
Skolicki, Z., De Jong, K.: The importance of a two-level perspective for island model design, pp. 4623–4630 (Oct 2007). https://doi.org/10.1109/CEC.2007.4425078
Skolicki, Z., De Jong, K.: The influence of migration intervals on island models, pp. 1295–1302 (Jun 2005)
Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_46
Turek, W., et al.: Highly scalable erlang framework for agent-based metaheuristic computing. J. Comput. Sci. 17, 234–248 (2016). https://doi.org/10.1016/J.JOCS.2016.03.003
Vose, M.D.: What are Genetic Algorithms? A Mathematical Prespective. In: Evolutionary Algorithms, pp. 251–276. The IMA Volumes in Mathematics and its Applications, Springer, New York, NY (1999). https://doi.org/10.1007/978-1-4612-1542-4_14
Wolpert, D., Macready, W.: Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans. Evolut. Comput. 1(1), 67-82 (1997)
Acknowledgement
The research presented in this paper received support from the Polish NCN Projects no. 2019/35/O/ST6/00571 (SB) and 2020/39/I/ST7/02285 (AB).
We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2023/016415.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Biełaszek, S., Nowak, A., Gądek, K., Byrski, A. (2024). Delays in Computing with Parallel Metaheuristics on HPC Infrastructure. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-70819-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70818-3
Online ISBN: 978-3-031-70819-0
eBook Packages: Computer ScienceComputer Science (R0)