Skip to main content

Delays in Computing with Parallel Metaheuristics on HPC Infrastructure

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2024)

Abstract

Due to their structure, metaheuristics such as parallel evolutionary algorithms (PEA) are well suited to be run on parallel and distributed infrastructure, e.g. supercomputers. However, there are still many issues that are not well researched in this context, e.g. existence of delays in HPC-grade implementations of metaheuristics and how they affect the computation itself. The lack of this knowledge may expose the fact, that the power of supercomputers in this context may be not properly used. We want to focus our research on examining such white spots. In the paper we focus on giving the evidence for the existence of delays, showing the differences among them in different island topologies, try to explain their nature and prepare to propose dedicated migration operators considering these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/deap.

  2. 2.

    https://jmetal.sourceforge.net/.

  3. 3.

    https://easea.unistra.fr/index.php/EASEA_platform.

  4. 4.

    PlatEMO source code http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.

  5. 5.

    https://gitlab.com/age-agh/age3.

  6. 6.

    http://ray.io.

  7. 7.

    https://easea.unistra.fr/index.php/EASEA_platform.

  8. 8.

    Source code of PlatEMO http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.

  9. 9.

    Project homepage: https://gitlab.com/age-agh/age3.

  10. 10.

    https://deap.readthedocs.io/en/master/.

  11. 11.

    Pipelining pattern. https://docs.ray.io/en/latest/ray-core/patterns/pipelining.html.

References

  1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)

    Article  Google Scholar 

  2. Alba, E., Luque, G., Luna, F.: Parallel metaheuristics for workforce planning. J. Math. Model. Algor. 6(3), 509–528 (2007). https://doi.org/10.1007/s10852-007-9058-5

    Article  MathSciNet  Google Scholar 

  3. Biełaszek, S., Byrski, A.: On parameters of migration in pea computing. Progress in Polish artificial intelligence research 4, : Łódź University of Technology Press, 2023, nr 2437, p. 491-493 (2023)

    Google Scholar 

  4. Biełaszek, S., Piętak, K., Kisiel-Dorohinicki, M.: New extensions of reproduction operators In solving LABS problem using EMAS Meta-Heuristic. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) Computational Collective Intelligence, pp. 304–316. Springer International Publishing, Cham, Lecture Notes in Computer Science (2021). https://doi.org/10.1007/978-3-030-88081-1_23

    Chapter  Google Scholar 

  5. Cantu-Paz, E.: On the Effects of Migration on the Fitness Distribution of Parallel Evolutionary Algorithms. No. UCRL-JC-138729 (Apr 2000). https://www.osti.gov/biblio/791479

  6. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (2000)

    Google Scholar 

  7. Cantú-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and practice 186, 221–238 (Jun 2000). https://doi.org/10.1016/S0045-7825(99)00385-0, iSSN: 00457825 Issue: 2-4 Journal Abbreviation: Computer Methods in Applied Mechanics and Engineering

  8. Crainic, T.G., Hail, N.: Parallel Metaheuristics Applications. Parallel Metaheuristics, p. 447 (2005). https://www.academia.edu/65945140/Parallel_Metaheuristics_Applications

  9. Goldberg, D.: Genetic Algorithms in Search. Addison Wesley, Optimization and Machine Learning (1989)

    Google Scholar 

  10. Lazarova, M., Borovska, P.: Comparison of parallel metaheuristics for solving the TSP, p. 17 (Jan 2008). https://doi.org/10.1145/1500879.1500899

  11. Misaghi, M., Yaghoobi, M.: Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. J. Comput. Design Eng. 6(3), 284–295 (2019). https://doi.org/10.1016/j.jcde.2019.01.001

    Article  Google Scholar 

  12. Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410), pp. 88–92 (Aug 1999)

    Google Scholar 

  13. Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the island model. In: Parallel Computing, Issues 10-11, October-November 2010, vol. 36, pp. 555-571 (1993)

    Google Scholar 

  14. Schaefer, R., Byrski, A., Smolka, M.: The island model as a markov dynamic system. Int. J. Appl. Math. Comput. Sci. 22(4), 971–984 (2012). https://doi.org/10.2478/V10006-012-0072-Z

  15. Skolicki, Z., De Jong, K.: The importance of a two-level perspective for island model design, pp. 4623–4630 (Oct 2007). https://doi.org/10.1109/CEC.2007.4425078

  16. Skolicki, Z., De Jong, K.: The influence of migration intervals on island models, pp. 1295–1302 (Jun 2005)

    Google Scholar 

  17. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_46

    Chapter  Google Scholar 

  18. Turek, W., et al.: Highly scalable erlang framework for agent-based metaheuristic computing. J. Comput. Sci. 17, 234–248 (2016). https://doi.org/10.1016/J.JOCS.2016.03.003

    Article  MathSciNet  Google Scholar 

  19. Vose, M.D.: What are Genetic Algorithms? A Mathematical Prespective. In: Evolutionary Algorithms, pp. 251–276. The IMA Volumes in Mathematics and its Applications, Springer, New York, NY (1999). https://doi.org/10.1007/978-1-4612-1542-4_14

  20. Wolpert, D., Macready, W.: Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans. Evolut. Comput. 1(1), 67-82 (1997)

    Google Scholar 

Download references

Acknowledgement

The research presented in this paper received support from the Polish NCN Projects no. 2019/35/O/ST6/00571 (SB) and 2020/39/I/ST7/02285 (AB).

We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2023/016415.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sylwia Biełaszek or Aleksander Byrski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biełaszek, S., Nowak, A., Gądek, K., Byrski, A. (2024). Delays in Computing with Parallel Metaheuristics on HPC Infrastructure. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70819-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70818-3

  • Online ISBN: 978-3-031-70819-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics