Skip to main content

New Results for Some Turán Problem Instances Obtained Using the Reinforcement Learning Technique

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14811))

Included in the following conference series:

  • 244 Accesses

Abstract

The Turán number ex(nF) represents the maximum number of edges in an F-free graph on n vertices. Determining these numbers for general graphs is a long-standing and challenging open problem. Ideally, one aims not only to compute these numbers exactly but also to understand their asymptotic behavior, although such results are currently limited to specific cases. This article introduces new results for \(ex(n,C_{2k})\) and the associated parameter f(n, 2k), achieved through the application of reinforcement machine learning techniques. Specifically, the RLS algorithm, initially proposed by Zhou et al. for vertex coloring in graphs, has been adapted to address certain Turán problems involving edge coloring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  Google Scholar 

  2. Caccetta, L., Vijayan, K.: Maximal cycles in graphs. Discret. Math. 98, 1–7 (1991)

    Article  MathSciNet  Google Scholar 

  3. Clapham, C.R.J., Flockhart, A., Sheehan, J.: Graphs without four-cycles. J. Graph Theory 13(1), 29–47 (1989)

    Article  MathSciNet  Google Scholar 

  4. Dzido, T.: Proving correctness of some Turáan’s problem results obtained by the reinforcement learning technique, submitted for publication

    Google Scholar 

  5. Dzido, T.: Applying reinforcement learning to Ramsey problems. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds.) ICCS 2023. LNCS, vol. 10476, pp. 589–596. Springer, Cham (2023)

    Google Scholar 

  6. Füredi, Z.: On the number of edges of quadrilateral-free graphs. J. Combin. Theory (B) 68, 1–6 (1996)

    Article  MathSciNet  Google Scholar 

  7. Füredi, Z., Gunderson, D.S.: Extremal numbers for odd cycles. Comb. Probab. Comput. 24(4), 641–645 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gasarch, W.: https://www.cs.umd.edu/$~$gasarch/TOPICS/ramsey/ramsey.html. Accessed 29 Nov 2023

  9. Gosavi, A.: Reinforcement learning: a tutorial survey and recent advances. INFORMS J. Comput. 21, 178–192 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hendry, G.R.T., Brandt, S.: An extremai problem for cycles in Hamiltonian graphs. Graphs Combinator. 11, 255–262 (1995)

    Article  Google Scholar 

  11. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  12. Li, B., Ning, B.: Exact bipartite Turán numbers of large even cycles. J. Graph Theory 97(4), 642–656 (2021)

    Article  MathSciNet  Google Scholar 

  13. Silver, D., Schrittwieser, J., Simonyan, K., et al.: Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017)

    Article  Google Scholar 

  14. Woodall, D.R.: Maximal circuits of graphs I. Acta Math. Acad. Sci. Hungar. 28, 77–80 (1976)

    Article  MathSciNet  Google Scholar 

  15. Yow, K.S., Luo, S.: Learning-Based Approaches for Graph Problems: A Survey. https://arxiv.org/abs/2204.01057. Accessed 4 Jan 2023

  16. Yuansheng, Y., Rowlison, P.: On graphs without 6-cycles and related Ramsey numbers. Utilitas Mathematica 44, 192–196 (1993)

    MathSciNet  Google Scholar 

  17. Yuansheng, Y., Rowlinson, P.: On extremal graphs without four-cycles. Utilitas Mathematica 41, 204–210 (1992)

    MathSciNet  Google Scholar 

  18. Zhou, Y., Hao, J.-K., Duval, B.: Reinforcement learning based local search for grouping problems: a case study on graph coloring. Expert Syst. Appl. 64, 412–422 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Dzido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dzido, T. (2024). New Results for Some Turán Problem Instances Obtained Using the Reinforcement Learning Technique. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70819-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70818-3

  • Online ISBN: 978-3-031-70819-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics