Skip to main content

Toward Intelligent Ethnicity Recognition and Face Anonymization: An IncepX-Ensemble Model

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2024)

Abstract

Human recognition in the present globalized society involves various characteristics and cultural differentiations. Nevertheless, these categorizations, which encompass racial classification, raise questions over the ramifications for privacy and security. Given the emergence of facial recognition technology and growing apprehensions regarding privacy in the digital era, there is an urgent need for inventive strategies to tackle these intricate issues. This paper introduces the IncepX-Ensemble Model Approach, which is segregated into two main modules: ethnicity recognition and face anonymization. The ethnicity recognition module employs VGG16, ResNet-50, and MobileNet architectures with various YOLO variants for precise face detection, accurately classifying individuals based on ethnic background. Evaluation metrics include accuracy, precision, recall, and F1-score. The face anonymization module utilizes a hybrid model combining blurring, pixelization, and masking techniques to preserve privacy while obscuring identifiable facial attributes. Evaluation metrics for anonymization include Mean Average Precision and Frechet Inception Distance score. Experimental results demonstrate superior performance compared to previous models, advancing both ethnicity recognition and face anonymization in facial analysis while addressing privacy concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekundayo, O.S., Viriri, S.: Facial expression recognition: a review of trends and techniques. IEEE Access 9, 136944ā€“136973 (2021)

    Google Scholar 

  2. Boughanem, H., Ghazouani, H., Barhoumi, W.: Facial emotion recognition in-the-wild using deep neural networks: a comprehensive review. SN Comput. Sci. 5(1), 1ā€“28 (2024)

    Google Scholar 

  3. Wouters, N., et al.: Biometric mirror: exploring ethical opinions towards facial analysis and automated decision-making. In: Proceedings of the 2019 on Designing Interactive Systems Conference, pp. 447ā€“461 (2019)

    Google Scholar 

  4. Jamil, F., Hameed, I.A.: Toward intelligent open-ended questions evaluation based on predictive optimization. Exp. Syst. Appl., 120640 (2023)

    Google Scholar 

  5. Jamil, H., Qayyum, F., Iqbal, N., Jamil, F., Kim, D.H.: Optimal ensemble scheme for human activity recognition and floor detection based on AutoML and weighted soft voting using smartphone sensors. IEEE Sens. J. 23(3), 2878ā€“2890 (2022)

    Google Scholar 

  6. Shahzad, A., et al.: Automated uterine fibroids detection in ultrasound images using deep convolutional neural networks. In: Healthcare, voll. 11, p. 1493. MDPI (2023)

    Google Scholar 

  7. Jamil, F., Ahmad, S., Whangbo, T.K., Muthanna, A., Kim, D.-H.: Improving blockchain performance in clinical trials using intelligent optimal transaction traffic control mechanism in smart healthcare applications. Comput. Ind. Eng. 170, 108327 (2022)

    Google Scholar 

  8. Ahmad, S., Khan, S., Jamil, F., Qayyum, F., Ali, A., Kim, D.H.: Design of a general complex problem-solving architecture based on task management and predictive optimization. Int. J. Distrib. Sens. Netw. 18(6), 15501329221107868 (2022)

    Article  Google Scholar 

  9. Qayyum, F., Jamil, F., Ahmad, S., Kim, D.-H.: Hybrid renewable energy resources management for optimal energy operation in nano-grid. Comput. Mater. Contin 71, 2091ā€“2105 (2022)

    Google Scholar 

  10. Jamil, F., Qayyum, F., Alhelaly, S., Javed, F., Muthanna, A.: Intelligent microservice based on blockchain for healthcare applications. Comput. Mater. Continua 69(2) (2021)

    Google Scholar 

  11. Jamil, F., Kim, D.H.: Enhanced Kalman filter algorithm using fuzzy inference for improving position estimation in indoor navigation. J. Intell. Fuzzy Syst. 40(5), 8991ā€“9005 (2021)

    Article  Google Scholar 

  12. Salari, A., Djavadifar, A., Liu, X., Najjaran, H.: Object recognition datasets and challenges: a review. Neurocomputing 495, 129ā€“152 (2022)

    Article  Google Scholar 

  13. Kollias, D., Sharmanska, V., Zafeiriou, S.: Distribution matching for heterogeneous multi-task learning: a large-scale face study. arXiv preprint arXiv:2105.03790 (2021)

  14. BeltrƔn, M., Calvo, M.: A privacy threat model for identity verification based on facial recognition. Comput. Secur., 103324 (2023)

    Google Scholar 

  15. Chen, H., Deng, Y., Zhang, S.: Where am I from?ā€“east Asian ethnicity classification from facial recognition. Project Study in Stanford University (2016)

    Google Scholar 

  16. Sunitha, G., Geetha, K., Neelakandan, S., Pundir, A.K.S., Hemalatha, S., Kumar, V.: Intelligent deep learning based ethnicity recognition and classification using facial images. Image Vis. Comput. 121, 104404 (2022)

    Google Scholar 

  17. Obayya, M.: Optimal deep transfer learning based ethnicity recognition on face images. Image Vis. Comput. 128, 104584 (2022)

    Google Scholar 

  18. Darabant, A.S., Borza, D., Danescu, R.: Recognizing human races through machine learning-a multi-network, multi-features study. Mathematics 9(2), 195 (2021)

    Google Scholar 

  19. HukkelĆ„s, H., Mester, R., Lindseth, F.: DeepPrivacy: a generative adversarial network for face anonymization. In: Bebis, G., et al. (eds.) ISVC 2019. LNCS, vol. 11844, pp. 565ā€“578. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33720-9_44

  20. Maximov, M., Elezi, I., Leal-TaixĆ©, L.: CIAGAN: conditional identity anonymization generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5447ā€“5456 (2020)

    Google Scholar 

  21. Chen, D., Chang, Y., Yan, R., Yang, J.: Protecting personal identification in video. In: Senior, A. (ed.) Protecting Privacy in Video Surveillance, pp. 115ā€“128. Springer, London (2009). https://doi.org/10.1007/978-1-84882-301-3_7

  22. Wang, J., Amos, B., Das, A., Pillai, P., Sadeh, N., Satyanarayanan, M.: A scalable and privacy-aware IoT service for live video analytics. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 38ā€“49 (2017)

    Google Scholar 

  23. BaltruÅ”aitis, T., Robinson, P., Morency, L.-P.: OpenFace: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1ā€“10. IEEE (2016)

    Google Scholar 

  24. Song, Y., Zhang, Z.: Utkface

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Jamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamil, F., Jamil, H. (2024). Toward Intelligent Ethnicity Recognition and Face Anonymization: An IncepX-Ensemble Model. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70819-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70818-3

  • Online ISBN: 978-3-031-70819-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics