Abstract
Computer Vision techniques are widely used in the entertainment industry, helping to create more realistic effects in games and movies. They can recognise objects, characters, and player movements in video games. This allows games to react to player behaviours more intelligently, providing more dynamic and engaging experiences. Additionally, applying deep learning techniques combined with Computer Vision supports generating automatic special effects, such as adding interactive effects to live broadcasts. Unfortunately, such methods can generate, modify, and falsify information, such as swapping faces in a photo or video recording. Social media has many counterfeits and modifications of content known as fake news. The article proposes a method for detecting modified, real facial images and artificially generated facial images based on convolutional neural networks. Our technique allows for classifying facial photos into one of three classes: real faces, real faces with applied modifications (using photo editing software), and artificially generated facial images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Choras, M., Gielczyk, A., Demestichas, K.P., Puchalski, D., Kozik, R.: Pattern recognition solutions for fake news detection. In: Saeed, K., Homenda, W. (eds.) CISIM 2018. LNCS, vol. 11127, pp. 130–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99954-8_12
Gielczyk, A., Wawrzyniak, R., Choras, M.: Evaluation of the existing tools for fake news detection. In: IFIP International Conference on Computer Information Systems and Industrial Management, pp. 144–151 (2019)
Ksieniewicz, P., Choras, M., Kozik, R., Wozniak, M.: Machine learning methods for fake news classification. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol. 11872, pp. 332–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33617-2_34
Choras, M., et al.: Advanced machine learning techniques for fake news (online disinformation) detection: a systematic mapping stud. Appl. Soft Comput. 101 (2021)
Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterisation, detection, and discussion. Inf. Process. Manag. 57 (2020)
Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. In: National Bureau of Economic Research, Working Paper 23089 (2017)
Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. (2018)
Gelfert, A.: Fake news: a definition. Informal Logic Spec. Issue: Reason Rhetoric Time Altern. Facts 38(1), 84–117 (2018)
OConnor, C., Murphy, M.: Going viral: doctors must tackle fake news in COVID-19 pandemic. BMJ 369(10), 1136 (2020)
Posetti, J., Matthews, A.: A short guide to the history of fake news and disinformation. Int. Center Journal, 7 (2018)
Parikh, S.B., Atrey, P.K.: Media-rich fake news detection: a survey. In: IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 436–441. IEEE (2018)
Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey. ACM Comput. Surv. (CSUR) 51, 1–36 (2018)
Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating fake news: a survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol. (TIST) 10, 1–42 (2019)
Wikipedia (2021). Accessed 26 Feb 2021
Meena, K.B., Tyagi, V.: Image forgery detection: survey and future. Data Eng. Appl. 2, 163–194 (2019)
Singh, P., Chadha, R.S.: A survey of digital watermarking techniques, applications and attacks. Int. J. Eng. Innov. Technol. 2, 165–175 (2013)
Lu, C., Liao, H.M., Member, S.: Structural digital signature for image authentication: an incidental distortion resistant scheme. IEEE Trans. Multimedia 5, 161–173 (2003)
Kubanek, M., Bartlomiejczyk, K., Bobulski, J.: Detection of artificial images and changes in real images using convolutional neural networks. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) CISIS 2019. AISC, vol. 1267, pp. 197–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57805-3_19
Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deepfakes and beyond a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020)
Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detection and localisation techniques: a review. Aust. J. Forensic Sci. 49, 281–307 (2017)
Deshpande, P.: Pixel-based digital image forgery detection techniques. Int. J. Eng. Res. Appl. 2, 539–543 (2012)
Verdoliva, L.: Media forensics and deepfakes: an overview. IEEE J. Sel. Top. Sig. Process. 14 (2020)
Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of RGB videos. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2016)
Thies, J., Zollhofer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38, 1–12 (2020)
El-Alfy, E.S., Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Pattern Anal. Appl. 18, 713–723 (2015)
Park, T.H., Han, J.G., Moon, Y.H., Eom, I.K.: Image splicing detection based on inter-scale 2D joint characteristics functions moments in wavelet domain. EURASIP J. Image Video Process. 30 (2016)
Wang, R., et al.: FakeSpotter: a simple baseline for spotting AI-synthesised fake faces. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp. 3444–3451 (2019)
Guarnera, L., Giudice, O., Battiato, S.: DeepFake detection by analysing convolutional traces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020)
Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop (2003)
Li, W., Yu, N.: Rotation robust detection of copy-move forgery. In: IEEE International Conference on Image Processing, pp. 2113–2116 (2010)
Ryu, S.J., Kirchner, M., Lee, M.J., Lee, H.K.: Rotation invariant localisation of duplicated image regions based on Zernike moments. IEEE Trans. Inf. Forensics Secur. 8, 1355–1370 (2013)
Huang, H., Ciou, A.: Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation. EURASIP J. Image Video Process. 68 (2019)
Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steGAN analysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics, vol. 9409 (2015)
Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Sign. Process. Lett. 22, 1849–1853 (2015)
Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)
Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164. ACM (2017)
Chen, B., Li, H., Luo, W.: Image processing operations identification via convolutional neural network. Inf. Sci. 63, 02908 (2017)
Huaxiao, M., Chen, B., Luo, W.: Fake faces identification via convolutional neural network. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 43–47. ACM (2018)
Hsu, C., Zhuang, Y.X., Lee, C.Y.: Deep fake image detection based on pairwise learning. Appl. Sci. 10 (2020)
Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.: On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
Ding, X., Raziei, Z., Larson, E.C., Olinick, E.V., Krueger, P., Hahsler, M.: Swapped face detection using deep learning and subjective assessment. EURASIP J. Inf. Secur. 1, 1–12 (2020)
Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)
Kubanek, M., Bobulski, J., Kulawik, J.: A method of speech coding for speech recognition using a convolutional neural network. Symmetry 11, 1–12 (2019)
Bobulski, J., Kubanek, M.: Waste classification system using image processing and convolutional neural networks. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 350–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_30
Nvidia (2020). https://generated.photos/faces. Accessed 17 Oct 2021
Kaggle (2020). https://www.kaggle.com/ciplab/real-and-fake-face-detection. Accessed 17 Oct 2021
Acknowledgements
This work is funded by project BS-PB-1-100-3016/2023/P Polish Ministry of Science.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bobulski, J., Kubanek, M. (2024). Detection of Fake Facial Images and Changes in Real Facial Images. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-70819-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70818-3
Online ISBN: 978-3-031-70819-0
eBook Packages: Computer ScienceComputer Science (R0)