Skip to main content

Detection of Fake Facial Images and Changes in Real Facial Images

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2024)

Abstract

Computer Vision techniques are widely used in the entertainment industry, helping to create more realistic effects in games and movies. They can recognise objects, characters, and player movements in video games. This allows games to react to player behaviours more intelligently, providing more dynamic and engaging experiences. Additionally, applying deep learning techniques combined with Computer Vision supports generating automatic special effects, such as adding interactive effects to live broadcasts. Unfortunately, such methods can generate, modify, and falsify information, such as swapping faces in a photo or video recording. Social media has many counterfeits and modifications of content known as fake news. The article proposes a method for detecting modified, real facial images and artificially generated facial images based on convolutional neural networks. Our technique allows for classifying facial photos into one of three classes: real faces, real faces with applied modifications (using photo editing software), and artificially generated facial images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choras, M., Gielczyk, A., Demestichas, K.P., Puchalski, D., Kozik, R.: Pattern recognition solutions for fake news detection. In: Saeed, K., Homenda, W. (eds.) CISIM 2018. LNCS, vol. 11127, pp. 130–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99954-8_12

    Chapter  Google Scholar 

  2. Gielczyk, A., Wawrzyniak, R., Choras, M.: Evaluation of the existing tools for fake news detection. In: IFIP International Conference on Computer Information Systems and Industrial Management, pp. 144–151 (2019)

    Google Scholar 

  3. Ksieniewicz, P., Choras, M., Kozik, R., Wozniak, M.: Machine learning methods for fake news classification. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol. 11872, pp. 332–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33617-2_34

    Chapter  Google Scholar 

  4. Choras, M., et al.: Advanced machine learning techniques for fake news (online disinformation) detection: a systematic mapping stud. Appl. Soft Comput. 101 (2021)

    Google Scholar 

  5. Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterisation, detection, and discussion. Inf. Process. Manag. 57 (2020)

    Google Scholar 

  6. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. In: National Bureau of Economic Research, Working Paper 23089 (2017)

    Google Scholar 

  7. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. (2018)

    Google Scholar 

  8. Gelfert, A.: Fake news: a definition. Informal Logic Spec. Issue: Reason Rhetoric Time Altern. Facts 38(1), 84–117 (2018)

    Article  Google Scholar 

  9. OConnor, C., Murphy, M.: Going viral: doctors must tackle fake news in COVID-19 pandemic. BMJ 369(10), 1136 (2020)

    Google Scholar 

  10. Posetti, J., Matthews, A.: A short guide to the history of fake news and disinformation. Int. Center Journal, 7 (2018)

    Google Scholar 

  11. Parikh, S.B., Atrey, P.K.: Media-rich fake news detection: a survey. In: IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 436–441. IEEE (2018)

    Google Scholar 

  12. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey. ACM Comput. Surv. (CSUR) 51, 1–36 (2018)

    Article  Google Scholar 

  13. Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating fake news: a survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol. (TIST) 10, 1–42 (2019)

    Article  Google Scholar 

  14. Wikipedia (2021). Accessed 26 Feb 2021

    Google Scholar 

  15. Meena, K.B., Tyagi, V.: Image forgery detection: survey and future. Data Eng. Appl. 2, 163–194 (2019)

    Google Scholar 

  16. Singh, P., Chadha, R.S.: A survey of digital watermarking techniques, applications and attacks. Int. J. Eng. Innov. Technol. 2, 165–175 (2013)

    Google Scholar 

  17. Lu, C., Liao, H.M., Member, S.: Structural digital signature for image authentication: an incidental distortion resistant scheme. IEEE Trans. Multimedia 5, 161–173 (2003)

    Article  Google Scholar 

  18. Kubanek, M., Bartlomiejczyk, K., Bobulski, J.: Detection of artificial images and changes in real images using convolutional neural networks. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) CISIS 2019. AISC, vol. 1267, pp. 197–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57805-3_19

    Chapter  Google Scholar 

  19. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deepfakes and beyond a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020)

    Article  Google Scholar 

  20. Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detection and localisation techniques: a review. Aust. J. Forensic Sci. 49, 281–307 (2017)

    Article  Google Scholar 

  21. Deshpande, P.: Pixel-based digital image forgery detection techniques. Int. J. Eng. Res. Appl. 2, 539–543 (2012)

    Google Scholar 

  22. Verdoliva, L.: Media forensics and deepfakes: an overview. IEEE J. Sel. Top. Sig. Process. 14 (2020)

    Google Scholar 

  23. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of RGB videos. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  24. Thies, J., Zollhofer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38, 1–12 (2020)

    Article  Google Scholar 

  25. El-Alfy, E.S., Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Pattern Anal. Appl. 18, 713–723 (2015)

    Article  MathSciNet  Google Scholar 

  26. Park, T.H., Han, J.G., Moon, Y.H., Eom, I.K.: Image splicing detection based on inter-scale 2D joint characteristics functions moments in wavelet domain. EURASIP J. Image Video Process. 30 (2016)

    Google Scholar 

  27. Wang, R., et al.: FakeSpotter: a simple baseline for spotting AI-synthesised fake faces. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp. 3444–3451 (2019)

    Google Scholar 

  28. Guarnera, L., Giudice, O., Battiato, S.: DeepFake detection by analysing convolutional traces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020)

    Google Scholar 

  29. Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop (2003)

    Google Scholar 

  30. Li, W., Yu, N.: Rotation robust detection of copy-move forgery. In: IEEE International Conference on Image Processing, pp. 2113–2116 (2010)

    Google Scholar 

  31. Ryu, S.J., Kirchner, M., Lee, M.J., Lee, H.K.: Rotation invariant localisation of duplicated image regions based on Zernike moments. IEEE Trans. Inf. Forensics Secur. 8, 1355–1370 (2013)

    Article  Google Scholar 

  32. Huang, H., Ciou, A.: Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation. EURASIP J. Image Video Process. 68 (2019)

    Google Scholar 

  33. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steGAN analysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics, vol. 9409 (2015)

    Google Scholar 

  34. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Sign. Process. Lett. 22, 1849–1853 (2015)

    Article  Google Scholar 

  35. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)

    Google Scholar 

  36. Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164. ACM (2017)

    Google Scholar 

  37. Chen, B., Li, H., Luo, W.: Image processing operations identification via convolutional neural network. Inf. Sci. 63, 02908 (2017)

    Google Scholar 

  38. Huaxiao, M., Chen, B., Luo, W.: Fake faces identification via convolutional neural network. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 43–47. ACM (2018)

    Google Scholar 

  39. Hsu, C., Zhuang, Y.X., Lee, C.Y.: Deep fake image detection based on pairwise learning. Appl. Sci. 10 (2020)

    Google Scholar 

  40. Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.: On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  41. Ding, X., Raziei, Z., Larson, E.C., Olinick, E.V., Krueger, P., Hahsler, M.: Swapped face detection using deep learning and subjective assessment. EURASIP J. Inf. Secur. 1, 1–12 (2020)

    Google Scholar 

  42. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)

    Google Scholar 

  43. Kubanek, M., Bobulski, J., Kulawik, J.: A method of speech coding for speech recognition using a convolutional neural network. Symmetry 11, 1–12 (2019)

    Article  Google Scholar 

  44. Bobulski, J., Kubanek, M.: Waste classification system using image processing and convolutional neural networks. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 350–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_30

    Chapter  Google Scholar 

  45. Nvidia (2020). https://generated.photos/faces. Accessed 17 Oct 2021

  46. Kaggle (2020). https://www.kaggle.com/ciplab/real-and-fake-face-detection. Accessed 17 Oct 2021

Download references

Acknowledgements

This work is funded by project BS-PB-1-100-3016/2023/P Polish Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Bobulski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bobulski, J., Kubanek, M. (2024). Detection of Fake Facial Images and Changes in Real Facial Images. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70819-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70818-3

  • Online ISBN: 978-3-031-70819-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics