Abstract
Peritoneal carcinomatosis is a malignant cancer that spreads to the surface lining of a person's abdominal cavity and is usually caused by infection from other organs. AI developments, one of which is YOLO, can be used to help detect peritoneal carcinomatosis lesions. This research detects peritoneal carcinomatosis lesions by comparing several versions of YOLO with different scales, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv6sn, YOLOv6s, YOLOv6m, YOLOv6l, YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l. Recall, precision and mean Average Precision (mAP) metrics are all used in this study as well as inference time. The results show that the recommended models are YOLOv8l and YOLOv5l where both get the same high results with mAP of 0.799, followed by YOLOv8s, with mAP results of 0.796. The study's findings are intended to direct future clinical applications and determine the most appropriate model for the identification of peritoneal carcinomatosis. This study provides in-depth information that forms the basis for informed decision-making, highlighting the accuracy required to address issues related to peritoneal carcinomatosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jayne, D.: Molecular biology of peritoneal carcinomatosis. Cancer Treat. Res. 134, 21–33 (2007). https://doi.org/10.1007/978-0-387-48993-3_2
Kusamura, S., et al.: Pathophysiology and biology of peritoneal carcinomatosis. World J Gastrointest Oncol 2(1), 12 (2010). https://doi.org/10.4251/WJGO.V2.I1.12
McMullen, J.R.W., Selleck, M., Wall, N.R., Senthil, M.: Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget 8(26), 43481 (2017). https://doi.org/10.18632/ONCOTARGET.16480
Wu, B., Pang, C., Zeng, X., Hu, X.: ME-YOLO: Improved YOLOv5 for detecting medical personal protective equipment. Applied Sciences 12(23), 11978 (2022). https://doi.org/10.3390/APP122311978
Chen, S., et al.: Automatic detection of stroke lesion from diffusion-weighted imaging via the improved YOLOv5. Comput. Biol. Med. 150, 106120 (2022). https://doi.org/10.1016/J.COMPBIOMED.2022.106120
Mohiyuddin, A., et al.: Breast tumor detection and classification in mammogram images using modified YOLOv5 network. Comput. Math. Methods Med. 2022 (2022). https://doi.org/10.1155/2022/1359019
Brungel, R., Friedrich, C.M.: DETR and YOLOv5: exploring performance and self-training for diabetic foot ulcer detection. Proc. IEEE Symp. Comput. Based Med. Syst., 148–153 (2021). https://doi.org/10.1109/CBMS52027.2021.00063
Huo, Y., et al.: Recognition of parasite eggs in microscopic medical images based on YOLOv5. Proceedings of 2021 5th Asian Conference on Artificial Intelligence Technology, ACAIT 2021, pp. 123–127 (2021). https://doi.org/10.1109/ACAIT53529.2021.9731120
Kang, M., Ting, C.M., Ting, F.F., Phan, R.C.W.: RCS-YOLO: a fast and high-accuracy object detector for brain tumor detection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14223 LNCS, pp. 600–610 (2023). https://doi.org/10.1007/978-3-031-43901-8_57
Ahmed, A., Imran, A.S., Manaf, A., Kastrati, Z., Daudpota, S.M.: Enhancing wrist abnormality detection with YOLO: analysis of state-of-the-art single-stage detection models. Biomed. Signal Process. Control 93, 106144 (2024). https://doi.org/10.1016/J.BSPC.2024.106144
Atrey, J., Regunathan, R., Rajkumar, R., Rajasekaran, R.: Real-world application of face mask detection system using YOLOv6. Int. J. Critical Infrastructures 20(3), 216–240 (2024). https://doi.org/10.1504/IJCIS.2024.10052165
Bahadure, N.B., Khomane, R., Nittala, A.: Anemia detection and classification from blood samples using data analysis and deep learning*. Automatika 65(3), 1163–1176 (2024). https://doi.org/10.1080/00051144.2024.2352317
Mohammad, S., Hashemi, H., Safari, L., Dadashzade Taromi, A.: Realism in action: anomaly-aware diagnosis of brain tumors from medical images using YOLOv8 and DeiT. (2024). Accessed: 05 Jun. 2024. [Online]. Available: https://arxiv.org/abs/2401.03302v2
Karaköse, M., Yetiş, H., Çeçen, M.: A new approach for effective medical deepfake detection in medical images. IEEE Access 12, 52205–52214 (2024). https://doi.org/10.1109/ACCESS.2024.3386644
Inui, A., et al.: Detection of Elbow OCD in the Ultrasound Image by Artificial Intelligence Using YOLOv8. Applied Sciences 13(13), 7623 (2023). https://doi.org/10.3390/APP13137623
Ju, R.Y., Cai, W.: Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Scientific Reports 13(1), 1–13 (2023). https://doi.org/10.1038/s41598-023-47460-7
Palanivel, N., Deivanai, S., Lakshmi Priya, G., Sindhuja, B., Shamrin Millet, M.: The Art of YOLOv8 Algorithm in Cancer Diagnosis using Medical Imaging. In: 2023 International Conference on System, Computation, Automation and Networking, ICSCAN 2023 (2023). https://doi.org/10.1109/ICSCAN58655.2023.10395046
Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger. Accessed: 21 Jan. 2024. [Online]. Available: http://pjreddie.com/yolo9000/
Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement (2018). Accessed: 21 Jan. 2024. [Online]. Available: https://arxiv.org/abs/1804.02767v1
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal Speed and Accuracy of Object Detection (2020). Accessed: 21 Jan. 2024. [Online]. Available: https://arxiv.org/abs/2004.10934v1
Li, A., et al.: YOLOv6: a single-stage object detection framework for industrial applications (2022). Accessed: 21 Jan. 2024. [Online]. Available: https://arxiv.org/abs/2209.02976v1
Li, A., et al.: YOLOv6 v3.0: A Full-Scale Reloading
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Accessed: 21 Jan. 2024. [Online]. Available: https://github.com/
ultralytics/ultralytics: NEW - YOLOv8
in PyTorch > ONNX > OpenVINO > CoreML > TFLite. Accessed: 25 Jan. 2024. [Online]. Available: https://github.com/ultralytics/ultralytics
Architecture Summary - Ultralytics YOLOv8 Docs. Accessed: 16 Jan. 2024. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/architecture_description/#1-model-structure
Algorithm principles and implementation with YOLOv8 — MMYOLO 0.6.0 documentation. Accessed: 16 Jan. 2024. [Online]. Available: https://mmyolo.readthedocs.io/en/latest/recommended_topics/algorithm_descriptions/yolov8_description.html
Andyartha, P.K., Raharjo, A.B., Purwitasari, D., Dumont, F., Thibaudeau, E., Dumas, C.: KICO: surgeon-centered collaborative tool to aid peritoneal carcinomatosis assessment. In: 2023 14th International Conference on Information and Communication Technology and System, ICTS 2023, pp. 35–39 (2023). https://doi.org/10.1109/ICTS58770.2023.10330836
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rochmawati, N. et al. (2025). Comparative Analysis of YOLO-Based Object Detection Models for Peritoneal Carcinomatosis. In: Singh, M., et al. Advances in Computing and Data Sciences. ICACDS 2024. Communications in Computer and Information Science, vol 2194. Springer, Cham. https://doi.org/10.1007/978-3-031-70906-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-70906-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70905-0
Online ISBN: 978-3-031-70906-7
eBook Packages: Computer ScienceComputer Science (R0)