Skip to main content

Comparative Analysis of YOLO-Based Object Detection Models for Peritoneal Carcinomatosis

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2024)

Abstract

Peritoneal carcinomatosis is a malignant cancer that spreads to the surface lining of a person's abdominal cavity and is usually caused by infection from other organs. AI developments, one of which is YOLO, can be used to help detect peritoneal carcinomatosis lesions. This research detects peritoneal carcinomatosis lesions by comparing several versions of YOLO with different scales, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv6sn, YOLOv6s, YOLOv6m, YOLOv6l, YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l. Recall, precision and mean Average Precision (mAP) metrics are all used in this study as well as inference time. The results show that the recommended models are YOLOv8l and YOLOv5l where both get the same high results with mAP of 0.799, followed by YOLOv8s, with mAP results of 0.796. The study's findings are intended to direct future clinical applications and determine the most appropriate model for the identification of peritoneal carcinomatosis. This study provides in-depth information that forms the basis for informed decision-making, highlighting the accuracy required to address issues related to peritoneal carcinomatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jayne, D.: Molecular biology of peritoneal carcinomatosis. Cancer Treat. Res. 134, 21–33 (2007). https://doi.org/10.1007/978-0-387-48993-3_2

    Article  Google Scholar 

  2. Kusamura, S., et al.: Pathophysiology and biology of peritoneal carcinomatosis. World J Gastrointest Oncol 2(1), 12 (2010). https://doi.org/10.4251/WJGO.V2.I1.12

    Article  Google Scholar 

  3. McMullen, J.R.W., Selleck, M., Wall, N.R., Senthil, M.: Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget 8(26), 43481 (2017). https://doi.org/10.18632/ONCOTARGET.16480

    Article  Google Scholar 

  4. Wu, B., Pang, C., Zeng, X., Hu, X.: ME-YOLO: Improved YOLOv5 for detecting medical personal protective equipment. Applied Sciences 12(23), 11978 (2022). https://doi.org/10.3390/APP122311978

  5. Chen, S., et al.: Automatic detection of stroke lesion from diffusion-weighted imaging via the improved YOLOv5. Comput. Biol. Med. 150, 106120 (2022). https://doi.org/10.1016/J.COMPBIOMED.2022.106120

    Article  Google Scholar 

  6. Mohiyuddin, A., et al.: Breast tumor detection and classification in mammogram images using modified YOLOv5 network. Comput. Math. Methods Med. 2022 (2022). https://doi.org/10.1155/2022/1359019

  7. Brungel, R., Friedrich, C.M.: DETR and YOLOv5: exploring performance and self-training for diabetic foot ulcer detection. Proc. IEEE Symp. Comput. Based Med. Syst., 148–153 (2021). https://doi.org/10.1109/CBMS52027.2021.00063

  8. Huo, Y., et al.: Recognition of parasite eggs in microscopic medical images based on YOLOv5. Proceedings of 2021 5th Asian Conference on Artificial Intelligence Technology, ACAIT 2021, pp. 123–127 (2021). https://doi.org/10.1109/ACAIT53529.2021.9731120

  9. Kang, M., Ting, C.M., Ting, F.F., Phan, R.C.W.: RCS-YOLO: a fast and high-accuracy object detector for brain tumor detection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14223 LNCS, pp. 600–610 (2023). https://doi.org/10.1007/978-3-031-43901-8_57

  10. Ahmed, A., Imran, A.S., Manaf, A., Kastrati, Z., Daudpota, S.M.: Enhancing wrist abnormality detection with YOLO: analysis of state-of-the-art single-stage detection models. Biomed. Signal Process. Control 93, 106144 (2024). https://doi.org/10.1016/J.BSPC.2024.106144

    Article  Google Scholar 

  11. Atrey, J., Regunathan, R., Rajkumar, R., Rajasekaran, R.: Real-world application of face mask detection system using YOLOv6. Int. J. Critical Infrastructures 20(3), 216–240 (2024). https://doi.org/10.1504/IJCIS.2024.10052165

  12. Bahadure, N.B., Khomane, R., Nittala, A.: Anemia detection and classification from blood samples using data analysis and deep learning*. Automatika 65(3), 1163–1176 (2024). https://doi.org/10.1080/00051144.2024.2352317

    Article  Google Scholar 

  13. Mohammad, S., Hashemi, H., Safari, L., Dadashzade Taromi, A.: Realism in action: anomaly-aware diagnosis of brain tumors from medical images using YOLOv8 and DeiT. (2024). Accessed: 05 Jun. 2024. [Online]. Available: https://arxiv.org/abs/2401.03302v2

  14. Karaköse, M., Yetiş, H., Çeçen, M.: A new approach for effective medical deepfake detection in medical images. IEEE Access 12, 52205–52214 (2024). https://doi.org/10.1109/ACCESS.2024.3386644

    Article  Google Scholar 

  15. Inui, A., et al.: Detection of Elbow OCD in the Ultrasound Image by Artificial Intelligence Using YOLOv8. Applied Sciences 13(13), 7623 (2023). https://doi.org/10.3390/APP13137623

  16. Ju, R.Y., Cai, W.: Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Scientific Reports 13(1), 1–13 (2023). https://doi.org/10.1038/s41598-023-47460-7

  17. Palanivel, N., Deivanai, S., Lakshmi Priya, G., Sindhuja, B., Shamrin Millet, M.: The Art of YOLOv8 Algorithm in Cancer Diagnosis using Medical Imaging. In: 2023 International Conference on System, Computation, Automation and Networking, ICSCAN 2023 (2023). https://doi.org/10.1109/ICSCAN58655.2023.10395046

  18. Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger. Accessed: 21 Jan. 2024. [Online]. Available: http://pjreddie.com/yolo9000/

  19. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement (2018). Accessed: 21 Jan. 2024. [Online]. Available: https://arxiv.org/abs/1804.02767v1

  20. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal Speed and Accuracy of Object Detection (2020). Accessed: 21 Jan. 2024. [Online]. Available: https://arxiv.org/abs/2004.10934v1

  21. Li, A., et al.: YOLOv6: a single-stage object detection framework for industrial applications (2022). Accessed: 21 Jan. 2024. [Online]. Available: https://arxiv.org/abs/2209.02976v1

  22. Li, A., et al.: YOLOv6 v3.0: A Full-Scale Reloading

    Google Scholar 

  23. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Accessed: 21 Jan. 2024. [Online]. Available: https://github.com/

  24. ultralytics/ultralytics: NEW - YOLOv8 in PyTorch > ONNX > OpenVINO > CoreML > TFLite. Accessed: 25 Jan. 2024. [Online]. Available: https://github.com/ultralytics/ultralytics

  25. Architecture Summary - Ultralytics YOLOv8 Docs. Accessed: 16 Jan. 2024. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/architecture_description/#1-model-structure

  26. Algorithm principles and implementation with YOLOv8 — MMYOLO 0.6.0 documentation. Accessed: 16 Jan. 2024. [Online]. Available: https://mmyolo.readthedocs.io/en/latest/recommended_topics/algorithm_descriptions/yolov8_description.html

  27. Andyartha, P.K., Raharjo, A.B., Purwitasari, D., Dumont, F., Thibaudeau, E., Dumas, C.: KICO: surgeon-centered collaborative tool to aid peritoneal carcinomatosis assessment. In: 2023 14th International Conference on Information and Communication Technology and System, ICTS 2023, pp. 35–39 (2023). https://doi.org/10.1109/ICTS58770.2023.10330836

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naim Rochmawati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rochmawati, N. et al. (2025). Comparative Analysis of YOLO-Based Object Detection Models for Peritoneal Carcinomatosis. In: Singh, M., et al. Advances in Computing and Data Sciences. ICACDS 2024. Communications in Computer and Information Science, vol 2194. Springer, Cham. https://doi.org/10.1007/978-3-031-70906-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70906-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70905-0

  • Online ISBN: 978-3-031-70906-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics