Abstract
Efficient collaboration within a robot swarm hinges on the precise localization of swarm members relative to their neighbors. However, in real-world scenarios, such as indoor GPS-denied environments, access to accurate global localization systems is typically limited, and relative localization poses challenges due to the absence of a global reference frame. This paper compares the localization accuracy of three methods: IR-based, visual-inertial, and ultra-wideband localization systems. We evaluate these systems to ascertain the relative localization accuracy of neighboring robots engaged in collective behaviors. We develop a simulation model for the three localization systems and conduct accuracy studies. Furthermore, we deploy two swarms, one consisting of five flying robots and one consisting of five ground robots performing three distinct behaviors to validate the simulation experiments. Through simulation and robot experiments, we present the characteristics of each system, including estimation accuracy, deployment cost, communication overhead, and behavior performance accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
de Azambuja, R., Fouad, H., Bouteiller, Y., Sol, C., Beltrame, G.: When being soft makes you tough: a collision-resilient quadcopter inspired by arthropods’ exoskeletons. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7854–7860. IEEE (2022)
Berlinger, F., Gauci, M., Nagpal, R.: Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 6(50), eabd8668 (2021)
Bilaloğlu, C., Şahin, M., Arvin, F., Şahin, E., Turgut, A.E.: A novel time-of-flight range and bearing sensor system for micro air vehicle swarms. In: Dorigo, M., et al. (eds.) ANTS 2022. LNCS, vol. 13491, pp. 248–256. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20176-9_20
Bitcraze: Crazyflie platform overview (2024). https://www.bitcraze.io/documentation/system/platform/. Accessed 19 Mar 2024
Bottigliero, S., Milanesio, D., Saccani, M., Maggiora, R.: A low-cost indoor real-time locating system based on TDOA estimation of UWB pulse sequences. IEEE Trans. Instrum. Meas. 70, 1–11 (2021)
Cao, Y., Chen, C., St-Onge, D., Beltrame, G.: Distributed TDMA for mobile UWB network localization. IEEE Internet Things J. 8(17), 13449–13464 (2021)
Chen, J., Gauci, M., Li, W., Kolling, A., Groß, R.: Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Trans. Rob. 31(2), 307–321 (2015)
Clearpath Robotics: Dingo indoor mobile robot (2024). https://clearpathrobotics.com/dingo-indoor-mobile-robot/. Accessed 19 Mar 2024
Coppola, M., McGuire, K.N., Scheper, K.Y., de Croon, G.C.: On-board communication-based relative localization for collision avoidance in micro air vehicle teams. Auton. Robot. 42, 1787–1805 (2018)
Güler, S., Abdelkader, M., Shamma, J.S.: Peer-to-peer relative localization of aerial robots with ultrawideband sensors. IEEE Trans. Control Syst. Technol. 29(5), 1981–1996 (2020)
Guo, K., Qiu, Z., Meng, W., Xie, L., Teo, R.: Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in gps denied environments. Int. J. Micro Air Veh. 9(3), 169–186 (2017)
Kasper, M., McGuire, S., Heckman, C.: A benchmark for visual-inertial odometry systems employing onboard illumination. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5256–5263. IEEE (2019)
Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile micro quadrotors. Auton. Robot. 35(4), 287–300 (2013)
Lajoie, P.Y., Beltrame, G.: Swarm-slam: sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems. IEEE Robot. Autom. Lett. 9(1), 475–482 (2023)
Le Goc, M., Kim, L.H., Parsaei, A., Fekete, J.D., Dragicevic, P., Follmer, S.: Zooids: building blocks for swarm user interfaces. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 97–109 (2016)
Li, J., Bi, Y., Li, K., Wang, K., Lin, F., Chen, B.M.: Accurate 3D localization for MAV swarms by UWB and IMU fusion. In: 2018 IEEE 14th International Conference on Control and Automation (ICCA), pp. 100–105. IEEE (2018)
Li, M., Liang, G., Luo, H., Qian, H., Lam, T.L.: Robot-to-robot relative pose estimation based on semidefinite relaxation optimization. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4491–4498. IEEE (2020)
Li, S., Coppola, M., De Wagter, C., de Croon, G.C.: An autonomous swarm of micro flying robots with range-based relative localization. arXiv preprint arXiv:2003.05853 (2020)
Li, Y., et al.: Fact: Fast and active coordinate initialization for vision-based drone swarms. arXiv preprint arXiv:2403.13455 (2024)
Li, Z., Fang, H., Zhao, J., Pang, L.: A multi-node collaborative and iterative UWB localisation algorithm for indoor complex environments. Int. J. Sens. Netw. 44(3), 133–143 (2024)
Liu, S., Yu, J., Ke, Z., Dai, F., Chen, Y.: Aerial-ground collaborative 3D reconstruction for fast pile volume estimation with unexplored surroundings. Int. J. Adv. Rob. Syst. 17(2), 1729881420919948 (2020)
Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable nervous systems for robots. Nat. Commun. 8(1), 439 (2017)
McGuire, K., De Wagter, C., Tuyls, K., Kappen, H., de Croon, G.C.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4(35), eaaw9710 (2019)
Nguyen, T.H., Xie, L.: Relative transformation estimation based on fusion of odometry and UWB ranging data. IEEE Trans. Robot. (2023)
Nguyen, T., Mohta, K., Taylor, C.J., Kumar, V.: Vision-based multi-MAV localization with anonymous relative measurements using coupled probabilistic data association filter. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3349–3355. IEEE (2020)
Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)
Pinciroli, C., et al.: Argos: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6, 271–295 (2012)
Pires, A.G., Rezeck, P.A., Chaves, R.A., Macharet, D.G., Chaimowicz, L.: Cooperative localization and mapping with robotic swarms. J. Intell. Robot. Syst. 102(2), 47 (2021)
Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: a large nano-quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3299–3304. IEEE (2017)
Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)
Saska, M., et al.: System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Auton. Robot. 41, 919–944 (2017)
Shan, F., Huo, H., Zeng, J., Li, Z., Wu, W., Luo, J.: Ultra-wideband swarm ranging protocol for dynamic and dense networks. IEEE/ACM Trans. Networking 30(6), 2834–2848 (2022)
Slavkov, I., Carrillo-Zapata, D., et al.: Morphogenesis in robot swarms. Sci. Robot.‘ 3(25), eaau9178 (2018)
St-Onge, D., Pinciroli, C., Beltrame, G.: Circle formation with computation-free robots shows emergent behavioural structure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5344–5349. IEEE (2018)
St-Onge, D., Varadharajan, V.S., Švogor, I., Beltrame, G.: From design to deployment: decentralized coordination of heterogeneous robotic teams. Front. Robot. AI 7, 51 (2020)
Sun, G., et al.: Mean-shift exploration in shape assembly of robot swarms. Nat. Commun. 14(1), 3476 (2023)
Tiemann, J., Eckermann, F., Wietfeld, C.: Atlas-an open-source TDOA-based ultra-wideband localization system. In: 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–6. IEEE (2016)
Tiemann, J., Wietfeld, C.: Scalable and precise multi-UAV indoor navigation using TDOA-based UWB localization. In: 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE (2017)
Trianni, V., Campo, A.: Fundamental collective behaviors in swarm robotics. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1377–1394. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_71
Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.: Optimized flocking of autonomous drones in confined environments. Sci. Robot. 3(20), eaat3536 (2018)
Wang, D., Lian, B., Liu, Y., Gao, B., Zhang, S.: Resilient cooperative localization based on factor graphs for multirobot systems. Remote Sens. 16(5), 832 (2024)
Weinstein, A., Cho, A., Loianno, G., Kumar, V.: Visual inertial odometry swarm: an autonomous swarm of vision-based quadrotors. IEEE Robot. Autom. Lett. 3(3), 1801–1807 (2018)
Xu, H., et al.: Omni-swarm: a decentralized omnidirectional visual-inertial-UWB state estimation system for aerial swarms. IEEE Trans. Rob. 38(6), 3374–3394 (2022)
Yang, B., Yang, E., Yu, L., Loeliger, A.: High-precision UWB-based localisation for UAV in extremely confined environments. IEEE Sens. J. 22(1), 1020–1029 (2021)
Zhou, X., et al.: Swarm of micro flying robots in the wild. Sci. Robot. 7(66), eabm5954 (2022)
Zhu, F., et al.: Swarm-lio: decentralized swarm lidar-inertial odometry. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3254–3260. IEEE (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Braga, R.G., Varadharajan, V.S., Beltrame, G., St-Onge, D. (2024). Swarming Out of the Lab: Comparing Relative Localization Methods for Collective Behavior. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-70932-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70931-9
Online ISBN: 978-3-031-70932-6
eBook Packages: Computer ScienceComputer Science (R0)