Skip to main content

Swarming Out of the Lab: Comparing Relative Localization Methods for Collective Behavior

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14987))

Included in the following conference series:

  • 480 Accesses

Abstract

Efficient collaboration within a robot swarm hinges on the precise localization of swarm members relative to their neighbors. However, in real-world scenarios, such as indoor GPS-denied environments, access to accurate global localization systems is typically limited, and relative localization poses challenges due to the absence of a global reference frame. This paper compares the localization accuracy of three methods: IR-based, visual-inertial, and ultra-wideband localization systems. We evaluate these systems to ascertain the relative localization accuracy of neighboring robots engaged in collective behaviors. We develop a simulation model for the three localization systems and conduct accuracy studies. Furthermore, we deploy two swarms, one consisting of five flying robots and one consisting of five ground robots performing three distinct behaviors to validate the simulation experiments. Through simulation and robot experiments, we present the characteristics of each system, including estimation accuracy, deployment cost, communication overhead, and behavior performance accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bit.ly/3VKFc36.

References

  1. de Azambuja, R., Fouad, H., Bouteiller, Y., Sol, C., Beltrame, G.: When being soft makes you tough: a collision-resilient quadcopter inspired by arthropods’ exoskeletons. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7854–7860. IEEE (2022)

    Google Scholar 

  2. Berlinger, F., Gauci, M., Nagpal, R.: Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 6(50), eabd8668 (2021)

    Article  Google Scholar 

  3. Bilaloğlu, C., Şahin, M., Arvin, F., Şahin, E., Turgut, A.E.: A novel time-of-flight range and bearing sensor system for micro air vehicle swarms. In: Dorigo, M., et al. (eds.) ANTS 2022. LNCS, vol. 13491, pp. 248–256. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20176-9_20

    Chapter  Google Scholar 

  4. Bitcraze: Crazyflie platform overview (2024). https://www.bitcraze.io/documentation/system/platform/. Accessed 19 Mar 2024

  5. Bottigliero, S., Milanesio, D., Saccani, M., Maggiora, R.: A low-cost indoor real-time locating system based on TDOA estimation of UWB pulse sequences. IEEE Trans. Instrum. Meas. 70, 1–11 (2021)

    Article  Google Scholar 

  6. Cao, Y., Chen, C., St-Onge, D., Beltrame, G.: Distributed TDMA for mobile UWB network localization. IEEE Internet Things J. 8(17), 13449–13464 (2021)

    Article  Google Scholar 

  7. Chen, J., Gauci, M., Li, W., Kolling, A., Groß, R.: Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Trans. Rob. 31(2), 307–321 (2015)

    Article  Google Scholar 

  8. Clearpath Robotics: Dingo indoor mobile robot (2024). https://clearpathrobotics.com/dingo-indoor-mobile-robot/. Accessed 19 Mar 2024

  9. Coppola, M., McGuire, K.N., Scheper, K.Y., de Croon, G.C.: On-board communication-based relative localization for collision avoidance in micro air vehicle teams. Auton. Robot. 42, 1787–1805 (2018)

    Article  Google Scholar 

  10. Güler, S., Abdelkader, M., Shamma, J.S.: Peer-to-peer relative localization of aerial robots with ultrawideband sensors. IEEE Trans. Control Syst. Technol. 29(5), 1981–1996 (2020)

    Article  Google Scholar 

  11. Guo, K., Qiu, Z., Meng, W., Xie, L., Teo, R.: Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in gps denied environments. Int. J. Micro Air Veh. 9(3), 169–186 (2017)

    Article  Google Scholar 

  12. Kasper, M., McGuire, S., Heckman, C.: A benchmark for visual-inertial odometry systems employing onboard illumination. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5256–5263. IEEE (2019)

    Google Scholar 

  13. Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile micro quadrotors. Auton. Robot. 35(4), 287–300 (2013)

    Article  Google Scholar 

  14. Lajoie, P.Y., Beltrame, G.: Swarm-slam: sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems. IEEE Robot. Autom. Lett. 9(1), 475–482 (2023)

    Article  Google Scholar 

  15. Le Goc, M., Kim, L.H., Parsaei, A., Fekete, J.D., Dragicevic, P., Follmer, S.: Zooids: building blocks for swarm user interfaces. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 97–109 (2016)

    Google Scholar 

  16. Li, J., Bi, Y., Li, K., Wang, K., Lin, F., Chen, B.M.: Accurate 3D localization for MAV swarms by UWB and IMU fusion. In: 2018 IEEE 14th International Conference on Control and Automation (ICCA), pp. 100–105. IEEE (2018)

    Google Scholar 

  17. Li, M., Liang, G., Luo, H., Qian, H., Lam, T.L.: Robot-to-robot relative pose estimation based on semidefinite relaxation optimization. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4491–4498. IEEE (2020)

    Google Scholar 

  18. Li, S., Coppola, M., De Wagter, C., de Croon, G.C.: An autonomous swarm of micro flying robots with range-based relative localization. arXiv preprint arXiv:2003.05853 (2020)

  19. Li, Y., et al.: Fact: Fast and active coordinate initialization for vision-based drone swarms. arXiv preprint arXiv:2403.13455 (2024)

  20. Li, Z., Fang, H., Zhao, J., Pang, L.: A multi-node collaborative and iterative UWB localisation algorithm for indoor complex environments. Int. J. Sens. Netw. 44(3), 133–143 (2024)

    Article  Google Scholar 

  21. Liu, S., Yu, J., Ke, Z., Dai, F., Chen, Y.: Aerial-ground collaborative 3D reconstruction for fast pile volume estimation with unexplored surroundings. Int. J. Adv. Rob. Syst. 17(2), 1729881420919948 (2020)

    Google Scholar 

  22. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable nervous systems for robots. Nat. Commun. 8(1), 439 (2017)

    Article  Google Scholar 

  23. McGuire, K., De Wagter, C., Tuyls, K., Kappen, H., de Croon, G.C.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4(35), eaaw9710 (2019)

    Article  Google Scholar 

  24. Nguyen, T.H., Xie, L.: Relative transformation estimation based on fusion of odometry and UWB ranging data. IEEE Trans. Robot. (2023)

    Google Scholar 

  25. Nguyen, T., Mohta, K., Taylor, C.J., Kumar, V.: Vision-based multi-MAV localization with anonymous relative measurements using coupled probabilistic data association filter. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3349–3355. IEEE (2020)

    Google Scholar 

  26. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)

    Google Scholar 

  27. Pinciroli, C., et al.: Argos: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6, 271–295 (2012)

    Article  Google Scholar 

  28. Pires, A.G., Rezeck, P.A., Chaves, R.A., Macharet, D.G., Chaimowicz, L.: Cooperative localization and mapping with robotic swarms. J. Intell. Robot. Syst. 102(2), 47 (2021)

    Article  Google Scholar 

  29. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: a large nano-quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3299–3304. IEEE (2017)

    Google Scholar 

  30. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)

    Article  Google Scholar 

  31. Saska, M., et al.: System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Auton. Robot. 41, 919–944 (2017)

    Article  Google Scholar 

  32. Shan, F., Huo, H., Zeng, J., Li, Z., Wu, W., Luo, J.: Ultra-wideband swarm ranging protocol for dynamic and dense networks. IEEE/ACM Trans. Networking 30(6), 2834–2848 (2022)

    Article  Google Scholar 

  33. Slavkov, I., Carrillo-Zapata, D., et al.: Morphogenesis in robot swarms. Sci. Robot.‘ 3(25), eaau9178 (2018)

    Article  Google Scholar 

  34. St-Onge, D., Pinciroli, C., Beltrame, G.: Circle formation with computation-free robots shows emergent behavioural structure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5344–5349. IEEE (2018)

    Google Scholar 

  35. St-Onge, D., Varadharajan, V.S., Švogor, I., Beltrame, G.: From design to deployment: decentralized coordination of heterogeneous robotic teams. Front. Robot. AI 7, 51 (2020)

    Article  Google Scholar 

  36. Sun, G., et al.: Mean-shift exploration in shape assembly of robot swarms. Nat. Commun. 14(1), 3476 (2023)

    Article  Google Scholar 

  37. Tiemann, J., Eckermann, F., Wietfeld, C.: Atlas-an open-source TDOA-based ultra-wideband localization system. In: 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–6. IEEE (2016)

    Google Scholar 

  38. Tiemann, J., Wietfeld, C.: Scalable and precise multi-UAV indoor navigation using TDOA-based UWB localization. In: 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE (2017)

    Google Scholar 

  39. Trianni, V., Campo, A.: Fundamental collective behaviors in swarm robotics. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1377–1394. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_71

    Chapter  Google Scholar 

  40. Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.: Optimized flocking of autonomous drones in confined environments. Sci. Robot. 3(20), eaat3536 (2018)

    Article  Google Scholar 

  41. Wang, D., Lian, B., Liu, Y., Gao, B., Zhang, S.: Resilient cooperative localization based on factor graphs for multirobot systems. Remote Sens. 16(5), 832 (2024)

    Article  Google Scholar 

  42. Weinstein, A., Cho, A., Loianno, G., Kumar, V.: Visual inertial odometry swarm: an autonomous swarm of vision-based quadrotors. IEEE Robot. Autom. Lett. 3(3), 1801–1807 (2018)

    Article  Google Scholar 

  43. Xu, H., et al.: Omni-swarm: a decentralized omnidirectional visual-inertial-UWB state estimation system for aerial swarms. IEEE Trans. Rob. 38(6), 3374–3394 (2022)

    Google Scholar 

  44. Yang, B., Yang, E., Yu, L., Loeliger, A.: High-precision UWB-based localisation for UAV in extremely confined environments. IEEE Sens. J. 22(1), 1020–1029 (2021)

    Article  Google Scholar 

  45. Zhou, X., et al.: Swarm of micro flying robots in the wild. Sci. Robot. 7(66), eabm5954 (2022)

    Article  Google Scholar 

  46. Zhu, F., et al.: Swarm-lio: decentralized swarm lidar-inertial odometry. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3254–3260. IEEE (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Gomes Braga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braga, R.G., Varadharajan, V.S., Beltrame, G., St-Onge, D. (2024). Swarming Out of the Lab: Comparing Relative Localization Methods for Collective Behavior. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70932-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70931-9

  • Online ISBN: 978-3-031-70932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics