Skip to main content

On the Design of Control Mechanisms for a Site Selection Task in a Simulated Swarm of Robots

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2024)

Abstract

Collective decision-making refers to a decision process by a group of agents in which, once the decision is made, it cannot be attributed to any of its group members. In this study, we design decision-making mechanisms, using evolutionary methods, to allow a swarm of simulated robots to make a collective decision in a site selection scenario. That is, the robots have to reach a consensus on which site is the best among those available in the environment. The original contribution of this study is in demonstrating that the design process can be free from several assumptions, made in previous related research work, on crucial elements underpinning the individual and group-level response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almansoori, A., Alkilabi, M., Colin, J.N., Tuci, E.: On the evolution of mechanisms for collective decision making in a swarm of robots. In: Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M. (eds.) WIVACE 2021. CCIS, vol. 1722, pp. 109–120. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-23929-8_11

    Chapter  Google Scholar 

  2. Almansoori, A., Alkilabi, M., Tuci, E.: On the evolution of mechanisms for three-option collective decision-making in a swarm of simulated robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 4–12 (2023)

    Google Scholar 

  3. Almansoori, A., Alkilabi, M., Tuci, E.: On the evolution of adaptable and scalable mechanisms for collective decision-making in a swarm of robots. Swarm Intell. 20(1), 1–21 (2024)

    Google Scholar 

  4. Beer, R.D.: A dynamical systems perspective on agent-environment interaction. Artif. Intell. 72, 173–215 (1995)

    Article  Google Scholar 

  5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  6. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  7. De Masi, G., Prasetyo, J., Zakir, R., Mankovskii, N., Ferrante, E., Tuci, E.: Robot swarm democracy: the importance of informed individuals against zealots. Swarm Intell. 15, 315–338 (2021)

    Article  Google Scholar 

  8. Dorigo, M., Şahin, E.: Guest editorial. Special issue: swarm robotics. Auton. Rob. 17(2–3), 111–113 (2004)

    Article  Google Scholar 

  9. Kato, S., Jones, M.C.: An extended family of circular distributions related to wrapped Cauchy distributions via Brownian motion. Bernoulli 19(1), 154–171 (2013). https://doi.org/10.3150/11-BEJ397

    Article  MathSciNet  Google Scholar 

  10. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Evolutionary Computation Series. Morgan Kaufmann (2001)

    Google Scholar 

  11. Lee, C., Lawry, J., Winfield, A.F.: Negative updating applied to the best-of-n problem with noisy qualities. Swarm Intell. 15(1), 111–143 (2021)

    Article  Google Scholar 

  12. Ligot, A., Birattari, M.: Simulation-only experiments to mimic the effects of the reality gap in the automatic design of robot swarms. Swarm Intell. 14(1), 1–24 (2020)

    Article  Google Scholar 

  13. Mendiburu, F.J., Ramos, D.G., Morais, M.R., Lima, A.M., Birattari, M.: Automode-mate: automatic off-line design of spatially-organizing behaviors for robot swarms. Swarm Evol. Comput. 74, 101118 (2022)

    Article  Google Scholar 

  14. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

    Google Scholar 

  15. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

    Article  Google Scholar 

  16. Parker, C.A.C., Zhang, H.: Biologically inspired collective comparisons by robotic swarms. Int. J. Robot. Res. 30(5), 524–535 (2011)

    Article  Google Scholar 

  17. Parker, C.A., Zhang, H.: Cooperative decision-making in decentralized multiple-robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron. 14(2), 240–251 (2009)

    Article  Google Scholar 

  18. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic environments. Swarm Intell. 13(3), 217–243 (2019)

    Article  Google Scholar 

  19. Salman, M., Garzón Ramos, D., Birattari, M.: Automatic design of stigmergy-based behaviours for robot swarms. Commun. Eng. 3(1), 30 (2024)

    Article  Google Scholar 

  20. Talamali, M.S., Saha, A., Marshall, J.A., Reina, A.: When less is more: robot swarms adapt better to changes with constrained communication. Sci. Robot. 6(56), eabf1416 (2021)

    Google Scholar 

  21. Trianni, V., Nolfi, S.: Engineering the evolution of self-organizing behaviors in swarm robotics: a case study. Artif. Life 17(3), 183–202 (2011)

    Article  Google Scholar 

  22. Trianni, V., Tuci, E., Ampatzis, C., Dorigo, M.: Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neurocontrollers to collective behaviors. In: Vargas, P.A., Di Paolo, E.A., Harvey, I., Husbands, P. (eds.) The Horizons of Evolutionary Robotics, pp. 153–178. MIT Press (2014)

    Google Scholar 

  23. Tuci, E., Rabérin, A.: On the design of generalist strategies for swarms of simulated robots engaged in a task-allocation scenario. Swarm Intell. 9, 267–290 (2015)

    Article  Google Scholar 

  24. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016)

    Article  Google Scholar 

  25. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017). https://doi.org/10.3389/frobt.2017.00009

    Article  Google Scholar 

  26. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 45–52 (2014)

    Google Scholar 

  27. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-organizing robot swarm: on the speed versus accuracy trade-off. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1305–1314 (2015)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the CERUNA doctoral fellowship by the University of Namur and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034383. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Almansoori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almansoori, A., Trendafilov, D., Alkilabi, M., Tuci, E. (2024). On the Design of Control Mechanisms for a Site Selection Task in a Simulated Swarm of Robots. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70932-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70931-9

  • Online ISBN: 978-3-031-70932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics