Abstract
Robot swarms can effectively serve a variety of sensing and inspection applications. Certain inspection tasks require a binary classification decision. This work presents an experimental setup for a surface inspection task based on vibration sensing and studies a Bayesian two-outcome decision-making algorithm in a swarm of miniaturized wheeled robots. The robots are tasked with individually inspecting and collectively classifying a \(1\,\text {m} \times 1\,\text {m}\) tiled surface consisting of vibrating and non-vibrating tiles based on the majority type of tiles. The robots sense vibrations using onboard IMUs and perform collision avoidance using a set of IR sensors. We develop a simulation and optimization framework leveraging the Webots robotic simulator and a Particle Swarm Optimization (PSO) method. We consider two existing information sharing strategies and propose a new one that allows the swarm to rapidly reach accurate classification decisions. We first find optimal parameters that allow efficient sampling in simulation and then evaluate our proposed strategy against the two existing ones using 100 randomized simulation and 10 real experiments. We find that our proposed method compels the swarm to make decisions at an accelerated rate, with an improvement of up to 20.52% in mean decision time at only 0.78% loss in accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alanyali, M., Venkatesh, S., Savas, O., Aeron, S.: Distributed bayesian hypothesis testing in sensor networks. In: Proceedings of the American Control Conference, vol. 6, pp. 5369–5374. Institute of Electrical and Electronics Engineers Inc. (2004). https://doi.org/10.23919/acc.2004.1384706
Deraemaeker, A., Worden, K.: New trends in vibration based structural health monitoring. Springer Vienna (2010)
Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_58
Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence theory: tackling spatial correlations. Swarm Intell. 15(1–2), 83–110 (2021). https://doi.org/10.1007/s11721-021-00192-8
Bayat, B., Crasta, N., Crespi, A., Pascoal, A.M., Ijspeert, A.: Environmental monitoring using autonomous vehicles: a survey of recent searching techniques (2017). https://doi.org/10.1016/j.copbio.2017.01.009
Bigoni, C., Zhang, Z., Hesthaven, J.S.: Systematic sensor placement for structural anomaly detection in the absence of damaged states. Comput. Methods Appl. Mech. Eng. 371 (2020). https://doi.org/10.1016/j.cma.2020.113315
Bousdekis, A., Apostolou, D., Mentzas, G.: Predictive maintenance in the 4th industrial revolution: benefits, business opportunities, and managerial implications. IEEE Eng. Manage. Rev. 48(1), 57–62 (2020). https://doi.org/10.1109/EMR.2019.2958037
Brem, C., Siemens: Senseye Predictive Maintenance - Whitepaper True Cost Of Downtime 2022 (2023)
Carbone, C., Garibaldi, O., Kurt, Z.: Swarm robotics as a solution to crops inspection for precision agriculture. KnE Eng. 3(1), 552 (2018). https://doi.org/10.18502/keg.v3i1.1459
Chiu, D., Nagpal, R., Haghighat, B.: Optimization and evaluation of multi robot surface inspection through particle swarm optimization. In: ICRA, pp. 8996–9002 (2024)
Dementyev, A., et al.: Rovables: miniature on-body robots as mobile wearables. In: UIST 2016 - Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 111–120. Association for Computing Machinery, Inc (2016). https://doi.org/10.1145/2984511.2984531
Doebling, S., Farrar, C., Prime, M., Shevitz, D.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Technical Report (1996)
Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective bayesian decision-making in decentralized robot swarms. In: ICRA (2020). https://doi.org/10.1109/ICRA40945.2020.9196584
Ebert, J.T., Gauci, M., Nagpal, R.: Multi-feature col-lective decision making in robot swarms. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), vol. 9 (2018)
Gad, A.G.: Particle swarm optimization algorithm and its applications: a systematic review. Arch. Comput. Methods Eng. 29(5), 2531–2561 (2022). https://doi.org/10.1007/s11831-021-09694-4
Haghighat, B., Ebert, J., Boghaert, J., Ekblaw, A., Nagpal, R.: A swarm robotic approach to inspection of 2.5 d surfaces in orbit (2022)
Halder, S., Afsari, K.: Robots in inspection and monitoring of buildings and infrastructure: a systematic review (2023). https://doi.org/10.3390/app13042304
Innocente, M.S., Sienz, J.: Coefficients’ settings in particle swarm optimization: insight and guidelines. Mecánica Comput. Comput. Intell. Tech. Optim. Data Model. XXIX, 9253–9269 (2010)
Lee, A.J., Song, W., Yu, B., Choi, D., Tirtawardhana, C., Myung, H.: Survey of robotics technologies for civil infrastructure inspection. J. Inf. Intell. Resilience 2(1), 100018 (2023). https://doi.org/10.1016/j.iintel.2022.100018
Liu, Y., Hajj, M., Bao, Y.: Review of robot-based damage assessment for offshore wind turbines (2022). https://doi.org/10.1016/j.rser.2022.112187
Magalhães, F., Cunha, A., Caetano, E.: Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech. Syst. Signal Process. 28, 212–228 (2012). https://doi.org/10.1016/j.ymssp.2011.06.011
Makarenko, A., Durrant-Whyte, H.: Decentralized bayesian algorithms for active sensor networks. Inf. Fusion 7(4 SPEC. ISS.), 418–433 (2006). https://doi.org/10.1016/j.inffus.2005.09.010
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0
PwC: PdM 4.0. Technical Report (2017)
Roda, I., Macchi, M., Fumagalli, L.: The future of maintenance within industry 4.0: an empirical research in manufacturing. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 39–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_6
Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications (2020). https://doi.org/10.3389/frobt.2020.00036
Seeley, T.D., Buhrman, S.C.: Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45, 19–31 (1999)
Shan, Q., Mostaghim, S.: Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing. Swarm Intell. 15(4), 377–402 (2021). https://doi.org/10.1007/s11721-021-00201-w
Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: collective perception of environmental features in a robot swarm 9882 (2016). https://doi.org/10.1007/978-3-319-44427-7
Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives (2017). https://doi.org/10.3389/frobt.2017.00009
Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems collective decision with 100 kilo-bots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016). https://doi.org/10.1007/s10458-015-9323-3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Siemensma, T., Chiu, D., Ramshanker, S., Nagpal, R., Haghighat, B. (2024). Collective Bayesian Decision-Making in a Swarm of Miniaturized Robots for Surface Inspection. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-70932-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70931-9
Online ISBN: 978-3-031-70932-6
eBook Packages: Computer ScienceComputer Science (R0)