Skip to main content

Collective Bayesian Decision-Making in a Swarm of Miniaturized Robots for Surface Inspection

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14987))

Included in the following conference series:

  • 416 Accesses

Abstract

Robot swarms can effectively serve a variety of sensing and inspection applications. Certain inspection tasks require a binary classification decision. This work presents an experimental setup for a surface inspection task based on vibration sensing and studies a Bayesian two-outcome decision-making algorithm in a swarm of miniaturized wheeled robots. The robots are tasked with individually inspecting and collectively classifying a \(1\,\text {m} \times 1\,\text {m}\) tiled surface consisting of vibrating and non-vibrating tiles based on the majority type of tiles. The robots sense vibrations using onboard IMUs and perform collision avoidance using a set of IR sensors. We develop a simulation and optimization framework leveraging the Webots robotic simulator and a Particle Swarm Optimization (PSO) method. We consider two existing information sharing strategies and propose a new one that allows the swarm to rapidly reach accurate classification decisions. We first find optimal parameters that allow efficient sampling in simulation and then evaluate our proposed strategy against the two existing ones using 100 randomized simulation and 10 real experiments. We find that our proposed method compels the swarm to make decisions at an accelerated rate, with an improvement of up to 20.52% in mean decision time at only 0.78% loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alanyali, M., Venkatesh, S., Savas, O., Aeron, S.: Distributed bayesian hypothesis testing in sensor networks. In: Proceedings of the American Control Conference, vol. 6, pp. 5369–5374. Institute of Electrical and Electronics Engineers Inc. (2004). https://doi.org/10.23919/acc.2004.1384706

  2. Deraemaeker, A., Worden, K.: New trends in vibration based structural health monitoring. Springer Vienna (2010)

    Google Scholar 

  3. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_58

    Chapter  Google Scholar 

  4. Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence theory: tackling spatial correlations. Swarm Intell. 15(1–2), 83–110 (2021). https://doi.org/10.1007/s11721-021-00192-8

    Article  Google Scholar 

  5. Bayat, B., Crasta, N., Crespi, A., Pascoal, A.M., Ijspeert, A.: Environmental monitoring using autonomous vehicles: a survey of recent searching techniques (2017). https://doi.org/10.1016/j.copbio.2017.01.009

  6. Bigoni, C., Zhang, Z., Hesthaven, J.S.: Systematic sensor placement for structural anomaly detection in the absence of damaged states. Comput. Methods Appl. Mech. Eng. 371 (2020). https://doi.org/10.1016/j.cma.2020.113315

  7. Bousdekis, A., Apostolou, D., Mentzas, G.: Predictive maintenance in the 4th industrial revolution: benefits, business opportunities, and managerial implications. IEEE Eng. Manage. Rev. 48(1), 57–62 (2020). https://doi.org/10.1109/EMR.2019.2958037

    Article  Google Scholar 

  8. Brem, C., Siemens: Senseye Predictive Maintenance - Whitepaper True Cost Of Downtime 2022 (2023)

    Google Scholar 

  9. Carbone, C., Garibaldi, O., Kurt, Z.: Swarm robotics as a solution to crops inspection for precision agriculture. KnE Eng. 3(1), 552 (2018). https://doi.org/10.18502/keg.v3i1.1459

  10. Chiu, D., Nagpal, R., Haghighat, B.: Optimization and evaluation of multi robot surface inspection through particle swarm optimization. In: ICRA, pp. 8996–9002 (2024)

    Google Scholar 

  11. Dementyev, A., et al.: Rovables: miniature on-body robots as mobile wearables. In: UIST 2016 - Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 111–120. Association for Computing Machinery, Inc (2016). https://doi.org/10.1145/2984511.2984531

  12. Doebling, S., Farrar, C., Prime, M., Shevitz, D.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Technical Report (1996)

    Google Scholar 

  13. Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective bayesian decision-making in decentralized robot swarms. In: ICRA (2020). https://doi.org/10.1109/ICRA40945.2020.9196584

  14. Ebert, J.T., Gauci, M., Nagpal, R.: Multi-feature col-lective decision making in robot swarms. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), vol. 9 (2018)

    Google Scholar 

  15. Gad, A.G.: Particle swarm optimization algorithm and its applications: a systematic review. Arch. Comput. Methods Eng. 29(5), 2531–2561 (2022). https://doi.org/10.1007/s11831-021-09694-4

    Article  MathSciNet  Google Scholar 

  16. Haghighat, B., Ebert, J., Boghaert, J., Ekblaw, A., Nagpal, R.: A swarm robotic approach to inspection of 2.5 d surfaces in orbit (2022)

    Google Scholar 

  17. Halder, S., Afsari, K.: Robots in inspection and monitoring of buildings and infrastructure: a systematic review (2023). https://doi.org/10.3390/app13042304

  18. Innocente, M.S., Sienz, J.: Coefficients’ settings in particle swarm optimization: insight and guidelines. Mecánica Comput. Comput. Intell. Tech. Optim. Data Model. XXIX, 9253–9269 (2010)

    Google Scholar 

  19. Lee, A.J., Song, W., Yu, B., Choi, D., Tirtawardhana, C., Myung, H.: Survey of robotics technologies for civil infrastructure inspection. J. Inf. Intell. Resilience 2(1), 100018 (2023). https://doi.org/10.1016/j.iintel.2022.100018

    Article  Google Scholar 

  20. Liu, Y., Hajj, M., Bao, Y.: Review of robot-based damage assessment for offshore wind turbines (2022). https://doi.org/10.1016/j.rser.2022.112187

  21. Magalhães, F., Cunha, A., Caetano, E.: Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech. Syst. Signal Process. 28, 212–228 (2012). https://doi.org/10.1016/j.ymssp.2011.06.011

    Article  Google Scholar 

  22. Makarenko, A., Durrant-Whyte, H.: Decentralized bayesian algorithms for active sensor networks. Inf. Fusion 7(4 SPEC. ISS.), 418–433 (2006). https://doi.org/10.1016/j.inffus.2005.09.010

  23. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  24. PwC: PdM 4.0. Technical Report (2017)

    Google Scholar 

  25. Roda, I., Macchi, M., Fumagalli, L.: The future of maintenance within industry 4.0: an empirical research in manufacturing. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 39–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_6

    Chapter  Google Scholar 

  26. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications (2020). https://doi.org/10.3389/frobt.2020.00036

  27. Seeley, T.D., Buhrman, S.C.: Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45, 19–31 (1999)

    Article  Google Scholar 

  28. Shan, Q., Mostaghim, S.: Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing. Swarm Intell. 15(4), 377–402 (2021). https://doi.org/10.1007/s11721-021-00201-w

    Article  Google Scholar 

  29. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: collective perception of environmental features in a robot swarm 9882 (2016). https://doi.org/10.1007/978-3-319-44427-7

  30. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives (2017). https://doi.org/10.3389/frobt.2017.00009

  31. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems collective decision with 100 kilo-bots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016). https://doi.org/10.1007/s10458-015-9323-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiemen Siemensma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siemensma, T., Chiu, D., Ramshanker, S., Nagpal, R., Haghighat, B. (2024). Collective Bayesian Decision-Making in a Swarm of Miniaturized Robots for Surface Inspection. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70932-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70931-9

  • Online ISBN: 978-3-031-70932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics