Skip to main content

Group-Level Behavioral Switch in a Robot Swarm Using Blockchain

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14987))

Included in the following conference series:

  • 376 Accesses

Abstract

In this paper, we introduce the concept of group-level behavioral switch (GLBS) in a robot swarm. We consider two distinct types of GLBS that differ in whether or not the individual robots in the group need to switch their behavior at the same time: the Synchronous GLBS (S-GLBS) and the Asynchronous GLBS (A-GLBS). To implement these GLBSs, we propose a blockchain-based solution built on the Ethereum platform. We then study its performance in terms of required time and success rate in a series of simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that this is mainly a representative scenario that well illustrates situations in which GLBSs might be needed.

  2. 2.

    https://github.com/ethereum/EIPs/issues/225.

References

  1. Bahçeci, E., Şahin, E.: Evolving aggregation behaviors for swarm robotic systems: a systematic case study. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 333–340 (2005)

    Google Scholar 

  2. Bahçeci, E., Soysal, O., Şahin, E.: A review: pattern formation and adaptation in multi-robot systems. Technical report. CMU-RI-TR-03-43, Carnegie Mellon University, Pittsburgh, PA (2003)

    Google Scholar 

  3. Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence theory: tackling spatial correlations. Swarm Intell. 15, 1–28 (2021). https://doi.org/10.1007/s11721-021-00192-8

    Article  Google Scholar 

  4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://doi.org/10.1007/s11721-012-0075-2

    Article  Google Scholar 

  5. Buterin, V.: A next-generation smart contract and decentralized application platform. Ethereum project white paper. Technical report, Ethereum Foundation (2014). https://ethereum.org/en/whitepaper/. Accessed 02 July 2024

  6. Chen, J., Sun, R., Kress-Gazit, H.: Distributed control of robotic swarms from reactive high-level specifications. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 1247–1254 (2021). https://doi.org/10.1109/CASE49439.2021.9551578

  7. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014). https://doi.org/10.4249/scholarpedia.1463

    Article  Google Scholar 

  8. Dorigo, M., Pacheco, A., Reina, A., Strobel, V.: Blockchain technology for mobile multi-robot systems. Nat. Rev. Electr. Eng. 1(4), 264–274 (2024). https://doi.org/10.1038/s44287-024-00034-9

    Article  Google Scholar 

  9. Dorigo, M., Théraulaz, G., Trianni, V.: Reflections on the future of swarm robotics. Sci. Robot. 5(49) (2020). https://doi.org/10.1126/scirobotics.abe4385

  10. Dorigo, M., Théraulaz, G., Trianni, V.: Swarm robotics: past, present and future. Proc. IEEE 109(7), 1152–1165 (2021). https://doi.org/10.1109/JPROC.2021.3072740

    Article  Google Scholar 

  11. Ducatelle, F., Di Caro, G., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5, 73–96 (2011). https://doi.org/10.1007/s11721-011-0053-0

    Article  Google Scholar 

  12. Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective Bayesian decision-making in decentralized robot swarms. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7186–7192 (2020). https://doi.org/10.1109/ICRA40945.2020.9196584

  13. Ferrante, E., Turgut, A.E., Mathews, N., Birattari, M., Dorigo, M.: Flocking in stationary and non-stationary environments: a novel communication strategy for heading alignment. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 331–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_34

    Chapter  Google Scholar 

  14. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Rob. 22(6), 1115–1130 (2006). https://doi.org/10.1109/TRO.2006.882919

    Article  Google Scholar 

  15. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)

    Article  Google Scholar 

  16. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-Inspired Comput. 1(1–2), 1–13 (2009). https://doi.org/10.1504/IJBIC.2009.022770

    Article  Google Scholar 

  17. Keramat, F., Peña Queralta, J., Westerlund, T.: Partition-tolerant and Byzantine-tolerant decision making for distributed robotic systems with IOTA and ROS2. IEEE Internet Things J. 10(14), 12985–12998 (2023). https://doi.org/10.1109/JIOT.2023.3257984

    Article  Google Scholar 

  18. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P.J.S., et al. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. IPCB: Instituto Politècnico de Castelo Branco, Portugal (2009)

    Google Scholar 

  19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  20. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008). https://doi.org/10.1007/s11721-007-0009-6

    Article  Google Scholar 

  21. O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in a group of autonomous mobile robots. Auton. Robot. 28(4), 439–455 (2010). https://doi.org/10.1007/s10514-010-9177-0

    Article  Google Scholar 

  22. Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm communicating via an ad-hoc network. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 3–15. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_1

    Chapter  Google Scholar 

  23. Pacheco, A., Strobel, V., Reina, A., Dorigo, M.: Real-time coordination of a foraging robot swarm using blockchain smart contracts. In: Dorigo, M., et al. (eds.) ANTS 2022. LNCS, vol. 13491, pp. 196–208. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20176-9_16

    Chapter  Google Scholar 

  24. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  25. Pinciroli, C., Beltrame, G.: Swarm-oriented programming of distributed robot networks. Computer 49, 32–41 (2016). https://doi.org/10.1109/MC.2016.376

    Article  Google Scholar 

  26. Polge, J., Robert, J., Le Traon, Y.: Permissioned blockchain frameworks in the industry: a comparison. ICT Express 7(2), 229–233 (2021). https://doi.org/10.1016/j.icte.2020.09.002

    Article  Google Scholar 

  27. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  28. St-Onge, D., Varadharajan, V.S., Švogor, I., Beltrame, G.: From design to deployment: decentralized coordination of heterogeneous robotic teams. Front. Robot. AI 7 (2020). https://doi.org/10.3389/frobt.2020.00051

  29. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, pp. 541–549. AAMAS 2018. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2018)

    Google Scholar 

  30. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to Byzantine robots. Front. Robot. AI 7(54) (2020). https://doi.org/10.3389/frobt.2020.00054

  31. Strobel, V., Pacheco, A., Dorigo, M.: Robot swarms neutralize harmful Byzantine robots using a blockchain-based token economy. Sci. Robot. 8(79), eabm4636 (2023). https://doi.org/10.1126/scirobotics.abm4636

  32. Trianni, V., Nolfi, S., Dorigo, M.: Hole avoidance: experiments in coordinated motion on rough terrain. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Kröse, B. (eds.) Intelligent Autonomous Systems 8 - IAS 8, pp. 29–36. IOS Press, Amsterdam (2004)

    Google Scholar 

  33. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4(9) (2017). https://doi.org/10.3389/frobt.2017.00009

  34. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016). https://doi.org/10.1007/s10458-015-9323-3

    Article  Google Scholar 

  35. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 45–52. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2014)

    Google Scholar 

  36. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger- EIP-150 revision. Technical report, Ethereum Foundation (2017)

    Google Scholar 

  37. Yang, G.Z., et al.: The grand challenges of science robotics. Sci. Robot. 3(14) (2018). https://doi.org/10.1126/scirobotics.aar7650

  38. Zhao, H., et al.: A generic framework for Byzantine-tolerant consensus achievement in robot swarms. In: Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023), pp. 8839–8846. IEEE (2023). https://doi.org/10.1109/IROS55552.2023.10341423

  39. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 3016–3023 (2002). https://doi.org/10.1109/ROBOT.2002.1013690

Download references

Acknowledgements

V. Strobel and M. Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are a Postdoctoral Researcher and a Research Director respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himank Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, H., Strobel, V., Pacheco, A., Ferrante, E., Natalizio, E., Dorigo, M. (2024). Group-Level Behavioral Switch in a Robot Swarm Using Blockchain. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70932-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70931-9

  • Online ISBN: 978-3-031-70932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics