Abstract
In this paper, we introduce the concept of group-level behavioral switch (GLBS) in a robot swarm. We consider two distinct types of GLBS that differ in whether or not the individual robots in the group need to switch their behavior at the same time: the Synchronous GLBS (S-GLBS) and the Asynchronous GLBS (A-GLBS). To implement these GLBSs, we propose a blockchain-based solution built on the Ethereum platform. We then study its performance in terms of required time and success rate in a series of simulation experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that this is mainly a representative scenario that well illustrates situations in which GLBSs might be needed.
- 2.
References
Bahçeci, E., Şahin, E.: Evolving aggregation behaviors for swarm robotic systems: a systematic case study. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 333–340 (2005)
Bahçeci, E., Soysal, O., Şahin, E.: A review: pattern formation and adaptation in multi-robot systems. Technical report. CMU-RI-TR-03-43, Carnegie Mellon University, Pittsburgh, PA (2003)
Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence theory: tackling spatial correlations. Swarm Intell. 15, 1–28 (2021). https://doi.org/10.1007/s11721-021-00192-8
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://doi.org/10.1007/s11721-012-0075-2
Buterin, V.: A next-generation smart contract and decentralized application platform. Ethereum project white paper. Technical report, Ethereum Foundation (2014). https://ethereum.org/en/whitepaper/. Accessed 02 July 2024
Chen, J., Sun, R., Kress-Gazit, H.: Distributed control of robotic swarms from reactive high-level specifications. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 1247–1254 (2021). https://doi.org/10.1109/CASE49439.2021.9551578
Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014). https://doi.org/10.4249/scholarpedia.1463
Dorigo, M., Pacheco, A., Reina, A., Strobel, V.: Blockchain technology for mobile multi-robot systems. Nat. Rev. Electr. Eng. 1(4), 264–274 (2024). https://doi.org/10.1038/s44287-024-00034-9
Dorigo, M., Théraulaz, G., Trianni, V.: Reflections on the future of swarm robotics. Sci. Robot. 5(49) (2020). https://doi.org/10.1126/scirobotics.abe4385
Dorigo, M., Théraulaz, G., Trianni, V.: Swarm robotics: past, present and future. Proc. IEEE 109(7), 1152–1165 (2021). https://doi.org/10.1109/JPROC.2021.3072740
Ducatelle, F., Di Caro, G., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5, 73–96 (2011). https://doi.org/10.1007/s11721-011-0053-0
Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective Bayesian decision-making in decentralized robot swarms. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7186–7192 (2020). https://doi.org/10.1109/ICRA40945.2020.9196584
Ferrante, E., Turgut, A.E., Mathews, N., Birattari, M., Dorigo, M.: Flocking in stationary and non-stationary environments: a novel communication strategy for heading alignment. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 331–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_34
Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Rob. 22(6), 1115–1130 (2006). https://doi.org/10.1109/TRO.2006.882919
Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)
Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-Inspired Comput. 1(1–2), 1–13 (2009). https://doi.org/10.1504/IJBIC.2009.022770
Keramat, F., Peña Queralta, J., Westerlund, T.: Partition-tolerant and Byzantine-tolerant decision making for distributed robotic systems with IOTA and ROS2. IEEE Internet Things J. 10(14), 12985–12998 (2023). https://doi.org/10.1109/JIOT.2023.3257984
Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P.J.S., et al. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. IPCB: Instituto Politècnico de Castelo Branco, Portugal (2009)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008). https://doi.org/10.1007/s11721-007-0009-6
O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in a group of autonomous mobile robots. Auton. Robot. 28(4), 439–455 (2010). https://doi.org/10.1007/s10514-010-9177-0
Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm communicating via an ad-hoc network. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 3–15. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_1
Pacheco, A., Strobel, V., Reina, A., Dorigo, M.: Real-time coordination of a foraging robot swarm using blockchain smart contracts. In: Dorigo, M., et al. (eds.) ANTS 2022. LNCS, vol. 13491, pp. 196–208. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20176-9_16
Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5
Pinciroli, C., Beltrame, G.: Swarm-oriented programming of distributed robot networks. Computer 49, 32–41 (2016). https://doi.org/10.1109/MC.2016.376
Polge, J., Robert, J., Le Traon, Y.: Permissioned blockchain frameworks in the industry: a comparison. ICT Express 7(2), 229–233 (2021). https://doi.org/10.1016/j.icte.2020.09.002
Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295
St-Onge, D., Varadharajan, V.S., Švogor, I., Beltrame, G.: From design to deployment: decentralized coordination of heterogeneous robotic teams. Front. Robot. AI 7 (2020). https://doi.org/10.3389/frobt.2020.00051
Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, pp. 541–549. AAMAS 2018. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2018)
Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to Byzantine robots. Front. Robot. AI 7(54) (2020). https://doi.org/10.3389/frobt.2020.00054
Strobel, V., Pacheco, A., Dorigo, M.: Robot swarms neutralize harmful Byzantine robots using a blockchain-based token economy. Sci. Robot. 8(79), eabm4636 (2023). https://doi.org/10.1126/scirobotics.abm4636
Trianni, V., Nolfi, S., Dorigo, M.: Hole avoidance: experiments in coordinated motion on rough terrain. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Kröse, B. (eds.) Intelligent Autonomous Systems 8 - IAS 8, pp. 29–36. IOS Press, Amsterdam (2004)
Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4(9) (2017). https://doi.org/10.3389/frobt.2017.00009
Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016). https://doi.org/10.1007/s10458-015-9323-3
Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 45–52. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2014)
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger- EIP-150 revision. Technical report, Ethereum Foundation (2017)
Yang, G.Z., et al.: The grand challenges of science robotics. Sci. Robot. 3(14) (2018). https://doi.org/10.1126/scirobotics.aar7650
Zhao, H., et al.: A generic framework for Byzantine-tolerant consensus achievement in robot swarms. In: Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023), pp. 8839–8846. IEEE (2023). https://doi.org/10.1109/IROS55552.2023.10341423
Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 3016–3023 (2002). https://doi.org/10.1109/ROBOT.2002.1013690
Acknowledgements
V. Strobel and M. Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are a Postdoctoral Researcher and a Research Director respectively.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gupta, H., Strobel, V., Pacheco, A., Ferrante, E., Natalizio, E., Dorigo, M. (2024). Group-Level Behavioral Switch in a Robot Swarm Using Blockchain. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-70932-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70931-9
Online ISBN: 978-3-031-70932-6
eBook Packages: Computer ScienceComputer Science (R0)