Skip to main content

Structural and Algorithmic Results for Stable Cycles and Partitions in the Roommates Problem

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2024)

Abstract

In the Stable Roommates problem, we seek a stable matching of the agents into pairs, in which no two agents have an incentive to deviate from their assignment. It is well known that a stable matching is unlikely to exist, but a stable partition always does and provides a succinct certificate for the unsolvability of an instance. Furthermore, apart from being a useful structural tool to study the problem, every stable partition corresponds to a stable half-matching, which has applications, for example, in sports scheduling and time-sharing applications. We establish new structural results for stable partitions and show how to enumerate all stable partitions and the cycles included in such structures efficiently. We also adapt known fairness and optimality criteria from stable matchings to stable partitions and give complexity and approximability results for the problems of computing such “fair” and “optimal” stable partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.paireddonation.org.

  2. 2.

    http://www.organdonation.nhs.uk.

References

  1. Abraham, D.J., Biró, P., Manlove, D.F.: “Almost stable’’ matchings in the Roommates problem. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411_1

    Chapter  Google Scholar 

  2. Aharoni, R., Fleiner, T.: On a lemma of Scarf. J. Comb. Theory Ser. B 87(1), 72–80 (2003)

    Article  MathSciNet  Google Scholar 

  3. Chen, J., Roy, S., Sorge, M.: Fractional matchings under preferences: stability and optimality. In: Proceedings of the IJCAI 2021, vol. 1, pp. 89–95 (2021)

    Google Scholar 

  4. Cooper, F.: Fair and large stable matchings in the stable marriage and student-project allocation problems. Ph.D. thesis, University of Glasgow (2020)

    Google Scholar 

  5. Dean, B.C., Munshi, S.: Faster algorithms for stable allocation problems. Algorithmica 58(1), 59–81 (2010)

    Article  MathSciNet  Google Scholar 

  6. Feder, T.: A new fixed point approach for stable networks and stable marriages. J. Comput. Syst. Sci. 45(2), 233–284 (1992)

    Article  MathSciNet  Google Scholar 

  7. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11, 291–319 (1994)

    Article  MathSciNet  Google Scholar 

  8. Fleiner, T.: The stable roommates problem with choice functions. Algorithmica 58, 82–101 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9 (1962)

    Article  MathSciNet  Google Scholar 

  10. Glitzner, F., Manlove, D.: Structural and algorithmic results for stable cycles and partitions in the roommates problem (2024). https://doi.org/10.48550/arXiv.2406.00437. arXiv:2406.00437

  11. Gupta, S., et al.: Popular matching in roommates setting is NP-hard. ACM Trans. Comput. Theory 13, 1–20 (2021)

    Article  MathSciNet  Google Scholar 

  12. Gusfield, D.: The structure of the stable roommate problem: efficient representation and enumeration of all stable assignments. SIAM J. Comput. 17, 742–769 (1988)

    Article  MathSciNet  Google Scholar 

  13. Gusfield, D., Pitt, L.: A bounded approximation for the minimum cost 2-sat problem. Algorithmica 8, 103–117 (1992)

    Article  MathSciNet  Google Scholar 

  14. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)

    Google Scholar 

  15. Irving, R.W.: An efficient algorithm for the “stable roommates’’ problem. J. Algorithms 6, 577–595 (1985)

    Article  MathSciNet  Google Scholar 

  16. Irving, R.W.: On the stable roommates problem. Research report CSC/86/R5, Department of Computing Science, University of Glasgow (1986)

    Google Scholar 

  17. Irving, R.W., Manlove, D.: The stable roommates problem with ties. J. Algorithms 43, 85–105 (2002)

    Article  MathSciNet  Google Scholar 

  18. Irving, R.W., Scott, S.: The stable fixtures problem-a many-to-many extension of stable roommates. Discrete Appl. Math. 155, 2118–2129 (2007)

    Article  MathSciNet  Google Scholar 

  19. Manlove, D.: Algorithmics of Matching Under Preferences. Series on Theoretical Computer Science, vol. 2. World Scientific (2013)

    Google Scholar 

  20. Mertens, S.: Random stable matchings. J. Stat. Mech: Theory Exp. 2005, P10008 (2005)

    Article  MathSciNet  Google Scholar 

  21. Pittel, B.: On a random instance of a ‘stable roommates’ problem: likely behavior of the proposal algorithm. Comb. Probab. Comput. 2, 53–92 (1993)

    Article  MathSciNet  Google Scholar 

  22. Pittel, B.: On random stable partitions. Int. J. Game Theory 48, 433–480 (2019)

    Article  MathSciNet  Google Scholar 

  23. Simola, S., Manlove, D.: Profile-based optimal stable matchings in the roommates problem (2021). https://doi.org/10.48550/arXiv.2110.02555. arXiv:2110.02555

  24. Tan, J.J.: A necessary and sufficient condition for the existence of a complete stable matching. J. Algorithms 12, 154–178 (1991)

    Article  MathSciNet  Google Scholar 

  25. Tan, J.J.: Stable matchings and stable partitions. Int. J. Comput. Math. 39, 11–20 (1991)

    Article  Google Scholar 

  26. Tan, J.J., Hsueh, Y.C.: A generalization of the stable matching problem. Discrete Appl. Math. 59, 87–102 (1995)

    Article  MathSciNet  Google Scholar 

  27. Teo, C.P., Sethuraman, J.: LP based approach to optimal stable matchings. In: Proceedings of SODA 1997, pp. 710–719 (1997)

    Google Scholar 

Download references

Acknowledgments

Frederik Glitzner is supported by a Minerva Scholarship from the School of Computing Science, University of Glasgow. David Manlove is supported by the EPSRC, grant number EP/X013618/1. We would like to thank the anonymous MATCH-UP and SAGT reviewers for their helpful suggestions. The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Glitzner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glitzner, F., Manlove, D. (2024). Structural and Algorithmic Results for Stable Cycles and Partitions in the Roommates Problem. In: Schäfer, G., Ventre, C. (eds) Algorithmic Game Theory. SAGT 2024. Lecture Notes in Computer Science, vol 15156. Springer, Cham. https://doi.org/10.1007/978-3-031-71033-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71033-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71032-2

  • Online ISBN: 978-3-031-71033-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics