Abstract
Zero-knowledge shuffle arguments are a useful tool for constructing mix-nets which enable anonymous communication. We propose a new shuffle argument using a novel technique that probabilistically checks that each weighted set of input elements corresponds to some weighted set of output elements, with weights from the same set as the input element weights. We achieve this using standard discrete log assumptions and the shortest integer solution (SIS) assumption. Our shuffle argument has prover and verifier complexity linear in the size of the shuffled set, and communication complexity logarithmic both in the shuffled set size and security parameter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Brands [10] called it the FindRep assumption and its known to be tightly equivalent to the discrete logarithm assumption.
- 2.
If non-trivial DLRELs are known between the input elements and the value h, there are attacks that succeed with overwhelming probability.
- 3.
Essentially finding a DLREL that holds both between the original commitments and the rerandomized ones, is related to solving a linear equation with \(N\) variables with two equations.
- 4.
The number v here depends on our SIS-assumption. If a cheating prover wants to use some known non-trivial discrete relation between the inputs, the relation has to be “short” and same across every rerandomization, meaning that effectively using it would break the SIS-assumption. We will expand on this more formally later.
References
Abdolmaleki, B., Fauzi, P., Krips, T., Siim, J.: Shuffle arguments based on subset-checking. Cryptology ePrint Archive, Report 2024/1056 (2024). https://eprint.iacr.org/2024/1056
Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.) USENIX Security 2008, pp. 335–348. USENIX Association (2008)
Aggelakis, A., Fauzi, P., Korfiatis, G., Louridas, P., Mergoupis-Anagnou, F., Siim, J., Zając, M.: A non-interactive shuffle argument with low trust assumptions. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 667–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_28
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press (1996). https://doi.org/10.1145/237814.237838
Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T., Tunge, T.: Lattice-based proof of shuffle and applications to electronic voting. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 227–251. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_10
Attema, T., Cramer, R.: Compressed \(\varSigma \)-protocol theory and practical application to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_18
Attema, T., Cramer, R., Kohl, L.: A compressed \(\varSigma \)-protocol theory for lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_19
Boneh, D., Eskandarian, S., Hanzlik, L., Greco, N.: Single secret leader election. Cryptology ePrint Archive, Report 2020/025 (2020), https://eprint.iacr.org/2020/025
Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_26
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00020
Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2075–2092. ACM Press (2019). https://doi.org/10.1145/3319535.3339820
Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: BulletProofs+: shorter proofs for privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735 (2020). https://eprint.iacr.org/2020/735
Damgård, I.: On \(\sigma \)-protocols. Lecture Notes, University of Aarhus, Department for Computer Science, p. 84 (2002)
Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-randomizable RCCA-secure public key encryption and its applications. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_6
Fauzi, P., Lipmaa, H., Siim, J., Zając, M.: An efficient pairing-based shuffle argument. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_4
Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_23
Fleischhacker, N., Simkin, M.: On publicly-accountable zero-knowledge and small shuffle arguments. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 618–648. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_22
Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_22
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (2008). https://doi.org/10.1145/1374376.1374407
Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Security Foundations Symposium, pp. 49–64. IEEE Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00012
Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the discrete log setting, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2093–2110. ACM Press (2019). https://doi.org/10.1145/3319535.3354251
Larsen, K.G., Obremski, M., Simkin, M.: Distributed shuffling in adversarial environments. Cryptology ePrint Archive, Report 2022/560 (2022). https://eprint.iacr.org/2022/560
Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 116–125. ACM Press (2001). https://doi.org/10.1145/501983.502000
Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. 9(2), 230–250 (1980). https://doi.org/10.1137/0209022
Team, T.E.F.C.R.: CurdleProofs: a shuffle argument protocol (2022). https://github.com/asn-d6/curdleproofs
Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.: From Helios to Zeus. In: 2013 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections, EVT/WOTE 2013, Washington, D.C., USA, 12–13 August 2013. USENIX Association (2013). https://www.usenix.org/conference/evtwote13/workshop-program/presentation/tsoukalas
Tyagi, N., Gilad, Y., Zaharia, M., Zeldovich, N.: Stadium: a distributed metadata-private messaging system. Cryptology ePrint Archive, Report 2016/943 (2016). https://eprint.iacr.org/2016/943
Acknowledgment
This research is supported by the National Research Foundation, Singapore under its Strategic Capability Research Centres Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
Author Toomas Krips was partly supported by the Estonian Research Council, ETAG, through grant PRG 946.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abdolmaleki, B., Fauzi, P., Krips, T., Siim, J. (2024). Shuffle Arguments Based on Subset-Checking. In: Galdi, C., Phan, D.H. (eds) Security and Cryptography for Networks. SCN 2024. Lecture Notes in Computer Science, vol 14973. Springer, Cham. https://doi.org/10.1007/978-3-031-71070-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-71070-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71069-8
Online ISBN: 978-3-031-71070-4
eBook Packages: Computer ScienceComputer Science (R0)