Abstract
Lookup arguments have recently attracted a lot of developments due to their applications in the constructions of succinct non-interactive arguments of knowledge (SNARKs). A closely related topic is subsequence arguments in which one can prove that string \(\textbf{s}\) is a subsequence of another string \(\textbf{t}\), i.e., deleting some characters in \(\textbf{t}\) can achieve \(\textbf{s}\). A dual notion, namely, non-subsequence arguments, is to prove that \(\textbf{s}\) is not a subsequence of \(\textbf{t}\). These problems have a lot of important applications in DNA sequence analysis, internet of things, blockchains, natural language processing, speech recognition, etc. However, despite their applications, they are not well-studied in cryptography, especially succinct arguments for non-subsequences with efficient proving time and sublinear verification time.
In this work, we propose the first succinct non-subsequence argument. Our solution applies the sumcheck protocol and is instantiable by any multivariate polynomial commitment schemes (PCSs). We achieve an efficient prover whose running time is linear in the size of sequences \(\textbf{s}\), \(\textbf{t}\) and their respective alphabet \(\varSigma \). Our proof is succinct and the verifier time is sublinear assuming the employed PCS has succinct commitments and sublinear verification time. When instantiating with Sona PCS (EUROCRYPT’24), we achieve proof size \(\mathcal {O}(\log _2|\textbf{s}| + \log _2|\textbf{t}|+\log _2|\varSigma |)\), prover time \(\mathcal {O}(|\textbf{s}|+|\textbf{t}|+|\varSigma |)\) and verifier time \(\mathcal {O}(\sqrt{|\textbf{s}|}+\sqrt{|\textbf{t}|}+\sqrt{|\varSigma |})\).
Extending our technique, we can achieve a batch subsequence argument for proving in batch k interleaving subsequence and non-subsequence arguments without proof size suffering a linear blow-up in k.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/360825.360855
Angel, S., Ioannidis, E., Margolin, E., Setty, S., Woods, J.: Reef: fast succinct non-interactive zero-knowledge regex proofs. In: 33rd USENIX Security Symposium – USENIX Security 2024. USENIX Association (2024). https://www.usenix.org/conference/usenixsecurity24/presentation/angel
Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly linear-time zero-knowledge proofs for correct program execution. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 595–626. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_20
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Campanelli, M., Faonio, A., Fiore, D., Li, T., Lipmaa, H.: Lookup arguments: improvements, extensions and applications to zero-knowledge decision trees. In: Tang, Q., Teague, V. (eds.) Public-Key Cryptography – PKC 2024. PKC 2024. LNCS, vol. 14602, pp. 337–369. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57722-2_11
Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-time prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. LNCS, vol. 14005, pp. 499–530. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30617-4_17
Eagen, L., Fiore, D., Gabizon, A.: CQ: cached quotients for fast lookups. Cryptology ePrint Archive, Paper 2022/1763 (2022). https://eprint.iacr.org/2022/1763
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gabizon, A., Williamson, Z.J.: Plookup: a simplified polynomial protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315 (2020). https://eprint.iacr.org/2020/315
GeeksforGeeks: Subsequence meaning in dsa. online (2023). https://www.geeksforgeeks.org/subsequence-meaning-in-dsa/
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing – STOC 2011, pp. 99–108. Association for Computing Machinery (2011). https://doi.org/10.1145/1993636.1993651
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing – STOC 1985, pp. 291–304. Association for Computing Machinery (1985). https://doi.org/10.1145/22145.22178
Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology ePrint Archive, Report 2022/1530 (2022). https://eprint.iacr.org/2022/1530
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. LNCS, vol. 13510, pp. 359–388. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_13
Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. In: Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science – FOCS 1990, vol. 1, pp. 2–10. IEEE (1990). https://doi.org/10.1109/FSCS.1990.89518
Luo, N., Weng, C., Singh, J., Tan, G., Piskac, R., Raykova, M.: Privacy-preserving regular expression matching using nondeterministic finite automata. Cryptology ePrint Archive, Paper 2023/643 (2023). https://eprint.iacr.org/2023/643
Nguyen, W., Datta, T., Chen, B., Tyagi, N., Boneh, D.: Mangrove: a scalable framework for folding-based SNARKs. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. LNCS, vol. 14929, pp. 308–344. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-68403-6_10
Raymond, M., Evers, G., Ponti, J., Krishnan, D., Fu, X.: Efficient zero knowledge for regular language. In: 19th EAI International Conference on Security and Privacy in Communication Networks – SecureComm 2023 (2023). to appear
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Setty, S., Thaler, J., Wahby, R.: Unlocking the lookup singularity with lasso. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. LNCS, vol. 14656, pp. 180–209. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-58751-1_7
Thakur, S.: A flexible snark via the monomial basis. Cryptology ePrint Archive, Paper 2023/1255 (2023). https://eprint.iacr.org/2023/1255
Thompson, K.: Programming techniques: regular expression search algorithm. Commun. ACM 11(6), 419–422 (1968). https://doi.org/10.1145/363347.363387
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy – S &P 2018, pp. 926–943. IEEE (2018). https://doi.org/10.1109/SP.2018.00060
Zhang, C., DeStefano, Z., Arun, A., Bonneau, J., Grubbs, P., Walfish, M.: Zombie: middleboxes that don’t snoop. In: 21st USENIX Symposium on Networked Systems Design and Implementation – NSDI 2024, pp. 1917–1936. USENIX Association (2024). https://www.usenix.org/conference/nsdi24/presentation/zhang-collin
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and Privacy – S &P 2020, pp. 859–876. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00052
Zhang, Y., Sun, S.F., Gu, D.: Efficient KZG-based univariate sum-check and lookup argument. In: Tang, Q., Teague, V. (eds.) Public-Key Cryptography – PKC 2024. PKC 2024. LNCS, vol. 14602, pp. 400–425. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57722-2_13
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE Symposium on Security and Privacy – S &P 2017, pp. 863–880. IEEE (2017). https://doi.org/10.1109/SP.2017.43
Acknowledgements
The work of San Ling and Huaxiong Wang was supported by Singapore Ministry of Education Academic Research Fund Tier 2 Grant T2EP20223-0028. This research is supported by the National Research Foundation, Singapore, and Infocomm Media Development Authority under its Trust Tech Funding Initiative, Strategic Capability Research Centres Funding Initiative, and Future Communications Research & Development Programme. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore, and Infocomm Media Development Authority. We also thank Dr Hong Hanh Tran, Minh Pham, Dr Chan Nam Ngo, Hien Chu, and anonymous reviewers for reviewing and giving valuable comments in this result.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Proof of Lemma 1
A Proof of Lemma 1
Proof
(Proof of Lemma 1). We prove this lemma by induction.
For the base case with \(p_0 = 0\), it is trivial since an empty string is a subsequence of an empty string.
Assume by inductive hypothesis that, for \(j \in [N-1]\), \(p_{j - 1}\) is the maximum index satisfying
Now, we prove that this is also true w.r.t. \(p_j\), i.e., the maximum index satisfying \((s_1, \dots , s_{p_j}) \lhd (t_1, \dots , t_j)\). We claim that \(p_{j - 1} \le p_j \le p_{j - 1} + 1\). It is trivial to see that \(p_{j - 1} \le p_j\) since a subsequence to \((t_1, \dots , t_{j -1})\) is also a subsequence of \((t_1, \dots , t_j)\). What happens if \(p_j \ge p_{j - 1} + 2\)?
Since \((s_1, \dots , s_{p_{j-1}}) \lhd (t_1, \dots , t_{j-1})\), we know that there exist \(\textsf{id}_1, \dots , \textsf{id}_{p_{j-1}}\) satisfying
Hence, if \(p_j \ge p_{j - 1} + 2\), we know that there exist \(\textsf{id}_{p_{j - 1} + 1}\) and \(\textsf{id}_{p_{j - 1}+2}\) satisfying
If \(\textsf{id}_{p_{j - 1} + 1} \le j - 1\), then it contradicts to the fact that \(p_{j - 1}\) is the maximum index satisfying \((s_1, \dots , s_{p_{j-1}})\lhd (t_1, \dots , t_{j - 1})\). Hence, \(j - 1 < \textsf{id}_{p_{j - 1} + 1} \le j\). Therefore, we also have \(j - 1 < \textsf{id}_{p_{j - 1} + 1} < \textsf{id}_{p_{j-1}+2} \le j\), a contradiction since there cannot exist two distinct integers in \((j-1,j]\). Thus, \(p_{j - 1} \le p_j \le p_{j - 1} + 1\).
With the above argument, we know that, if \(p_j = p_{j - 1} + 1\), then it must hold that \(\textsf{id}_{p_{j-1} + 1} = \textsf{id}_{p_j} = j\) which only happens when \(s_{p_{j - 1} + 1} = t_j\). Thus, we deduce that \(p_j = p_{j - 1} + 1\), if \(s_{p_{j -1} + 1} = t_j\), and \(p_{j} = p_{j-1}\), otherwise. We hence conclude the proof. \(\square \)
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ling, S., Tang, K.H., Vu, K., Wang, H., Yan, Y. (2024). Succinct Non-subsequence Arguments. In: Galdi, C., Phan, D.H. (eds) Security and Cryptography for Networks. SCN 2024. Lecture Notes in Computer Science, vol 14973. Springer, Cham. https://doi.org/10.1007/978-3-031-71070-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-71070-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71069-8
Online ISBN: 978-3-031-71070-4
eBook Packages: Computer ScienceComputer Science (R0)