Skip to main content

Exponential Quantum One-Wayness and EFI Pairs

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14973))

Included in the following conference series:

  • 196 Accesses

Abstract

In classical cryptography, one-way functions are widely considered to be the minimal computational assumption. However, when taking quantum information into account, the situation is more nuanced. There are currently two major candidates for the minimal assumption: the search quantum generalization of one-way functions are one-way state generators (OWSG), whereas the decisional variant are EFI pairs. A well-known open problem in quantum cryptography is to understand how these two primitives are related. A recent breakthrough result of Khurana and Tomer (STOC’24) shows that OWSGs imply EFI pairs, for the restricted case of pure states.

In this work, we make progress towards understanding the general case. To this end, we define the notion of inefficiently-verifiable one-way state generators (IV-OWSGs), where the verification algorithm is not required to be efficient, and show that these are precisely equivalent to EFI pairs, with an exponential loss in the reduction. Significantly, this equivalence holds also for mixed states. Thus our work establishes the following relations among these fundamental primitives of quantum cryptography:

$$ \text {(mixed) OWSGs} \implies \text {(mixed) IV-OWSGs} \equiv _\text {exp} \text {EFI pairs}, $$

where \(\equiv _\text {exp}\) denotes equivalence up to exponential security of the primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Without loss of generality, the \(\textsf{KeyGen}\) algorithm takes the following form: apply a QPT unitary to generate a superposition \(\sum _k \sqrt{\Pr [k\leftarrow \textsf{KeyGen}(1^\lambda )]}|k\rangle |\textrm{junk}_k\rangle \), measure the first register, and output the measurement result.

  2. 2.

    Without loss of generality, \(\textsf{StateGen}\) takes the following form: on input k, apply a QPT unitary \(U_k\) on \(|0...0\rangle \) to generate a pure state \(|\varPhi _k\rangle _{\textbf{A},\textbf{B}}=U_k|0...0\rangle \) and output the first register \(\textbf{A}\), which is in state \(\phi _k = \textrm{Tr}_{\textbf{B}}(|\varPhi _k\rangle \!\langle \varPhi _k|)\). Then the \(\textbf{A}\) registers of \(|\varPhi _k^{\otimes t}\rangle \) make up \(\textbf{R}_2\), while the \(\textbf{B}\) registers make up \(\textbf{C}_2\).

  3. 3.

    In fact, any any function \(f(\lambda )=\omega (\log \lambda )\) suffices.

  4. 4.

    A very recent work [4] shows that canonical quantum bit commitment schemes that satisfy computational hiding and computational \((1-1/{\textsf{poly}}(\lambda ))\)-binding are sufficient for constructing EFI pairs. We do not need this result.

  5. 5.

    The original OWSGs introduced in [20] were defined to have pure state outputs, but this was later generalized to allow for mixed state outputs [19].

  6. 6.

    It works even for \(t=0\).

References

  1. Aaronson, S.: Shadow tomography of quantum states. SIAM J. Comput. 49(5) (2020). https://doi.org/10.1137/18M120275X

  2. Ananth, P., Qian, L., Yuen, H.: Cryptography from pseudorandom quantum states. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 208–236. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_8

    Chapter  Google Scholar 

  3. Batra, R., Jain, R.: Commitments are equivalent to one-way state generators (2024). https://arxiv.org/abs/2404.03220

  4. Bostanci, J., Qian, L., Spooner, N., Yuen, H.: An efficient quantum parallel repetition theorem and applications. In: Mohar, B., Shinkar, I., O’Donnell, R. (eds.) Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, 24–28 June 2024, pp. 1478–1487. ACM (2024). https://doi.org/10.1145/3618260.3649603

  5. Brakerski, Z., Canetti, R., Qian, L.: On the computational hardness needed for quantum cryptography. In: Kalai, Y.T. (ed.) 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, 10-13 January 2023, MIT, Cambridge, Massachusetts, USA. LIPIcs, vol. 251, pp. 24:1–24:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ITCS.2023.24

  6. Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_5

    Chapter  Google Scholar 

  7. Goldreich, O.: A note on computational indistinguishability. Inf. Process. Lett. 34(6), 277–281 (1990). https://doi.org/10.1016/0020-0190(90)90010-U

  8. Gunn, S., Ju, N., Ma, F., Zhandry, M.: Commitments to quantum states. In: Saha, B., Servedio, R.A. (eds.) 55th ACM STOC, pp. 1579–1588. ACM Press (2023). https://doi.org/10.1145/3564246.3585198

  9. Hhan, M., Morimae, T., Yamakawa, T.: From the hardness of detecting superpositions to cryptography: quantum public key encryption and commitments. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part I. LNCS, vol. 14004, pp. 639–667. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30545-0_22

    Chapter  Google Scholar 

  10. Hiroka, T., Kitagawa, F., Nishimaki, R., Yamakawa, T.: Robust combiners and universal constructions for quantum cryptography. IACR Cryptol. ePrint Arch., 1772 (2023). https://eprint.iacr.org/2023/1772

  11. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press (1989). https://doi.org/10.1145/73007.73009

  12. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th FOCS, pp. 230–235. IEEE Computer Society Press (1989). https://doi.org/10.1109/SFCS.1989.63483

  13. Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_5

    Chapter  Google Scholar 

  14. Khurana, D., Tomer, K.: Commitments from quantum one-wayness. In: Mohar, B., Shinkar, I., O’Donnell, R. (eds.) Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, 24–28 June 2024, pp. 968–978. ACM (2024). https://doi.org/10.1145/3618260.3649654

  15. Kretschmer, W.: Quantum pseudorandomness and classical complexity. TQC 2021 (2021). https://doi.org/10.4230/LIPICS.TQC.2021.2

  16. Kretschmer, W., Qian, L., Sinha, M., Tal, A.: Quantum cryptography in algorithmica. In: Saha, B., Servedio, R.A. (eds.) 55th ACM STOC, pp. 1589–1602. ACM Press (2023). https://doi.org/10.1145/3564246.3585225

  17. Lombardi, A., Ma, F., Wright, J.: A one-query lower bound for unitary synthesis and breaking quantum cryptography. In: Mohar, B., Shinkar, I., O’Donnell, R. (eds.) Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, 24–28 June 2024, pp. 979–990. ACM (2024). https://doi.org/10.1145/3618260.3649650

  18. Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic composition. In: 18th ACM STOC, pp. 356–363. ACM Press (1986). https://doi.org/10.1145/12130.12167

  19. . Morimae, T., Yamakawa, T.: One-wayness in quantum cryptography. Cryptology ePrint Archive, Paper 2022/1336 (2022). https://eprint.iacr.org/2022/1336, https://eprint.iacr.org/2022/1336

  20. Morimae, T., Yamakawa, T.: Quantum commitments and signatures without one-way functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 269–295. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_10

    Chapter  Google Scholar 

  21. Yan, J.: General properties of quantum bit commitments (extended abstract). In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 628–657. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5_22

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their valuable comments. GM was supported by the European Research Council through an ERC Starting Grant (Grant agreement No. 101077455, ObfusQation). GM and MW acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. MW also acknowledges support by the European Research Council through an ERC Starting Grant (grant agreement No. 101040907, SYMOPTIC), by the NWO through grant OCENW.KLEIN.267, and by the BMBF through project Quantum Methods and Benchmarks for Resource Allocation (QuBRA). TM is supported by JST CREST JPMJCR23I3, JST Moonshot JPMJMS2061-5-1-1, JST FOREST, MEXT QLEAP, the Grant-in Aid for Transformative Research Areas (A) 21H05183, and the Grant-in-Aid for Scientific Research (A) No.22H00522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yamakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malavolta, G., Morimae, T., Walter, M., Yamakawa, T. (2024). Exponential Quantum One-Wayness and EFI Pairs. In: Galdi, C., Phan, D.H. (eds) Security and Cryptography for Networks. SCN 2024. Lecture Notes in Computer Science, vol 14973. Springer, Cham. https://doi.org/10.1007/978-3-031-71070-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71070-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71069-8

  • Online ISBN: 978-3-031-71070-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics