Abstract
We propose a new notion of vector commitment schemes with proofs of (non-)membership that we call universal vector commitments. We show how to build them directly from (i) Merkle commitments, and (ii) a universal accumulator and a plain vector commitment scheme. We also present a generic construction for universal accumulators over large domains from any vector commitment scheme, using cuckoo hashing. Leveraging the aforementioned generic constructions, we show that universal vector commitment schemes are implied by plain vector commitments and cuckoo hashing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For soundness, we must also show that the leaves are stored in sorted order.
- 2.
This induces a binary search tree over the interior nodes.
- 3.
This checks that if the middle path is to the right of \({\textsf{node}} _{\cdot , \kappa }\), then the first path is comprised of nodes going rightward, the second path is comprised of nodes going leftward and the third path ends in a node to the immediate right of the middle node. This is similarly extended to the case when the middle path is to the left of \({\textsf{node}} _{\cdot , \kappa }\).
- 4.
This checks whether the first path is comprised of nodes going rightward, and the second path is comprised of nodes going leftward.
References
Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28
Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20
Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revocation. In: 2017 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 301–315 (2017)
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5
de Castro, L., Peikert, C.: Functional commitments for all functions, with transparent setup and from sis. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 287–320. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_10
Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse Merkle trees. In: Brumley, B.B., Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 199–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8_13
Fisch, B.: Tight proofs of space and replication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 324–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_12
Fiore, D., Kolonelos, D., Perthuis, P.D.: Cuckoo commitments: registration-based encryption and key-value map commitments for large spaces. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, vol. 14442, pp. 166–200. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8733-7_6
Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21
Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, Alexandria, Virginia, USA, pp. 584–597. ACM Press (2007)
Konstantopoulos, G.: Plasma cash: towards more efficient plasma constructions (2019)
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15
Rodler, F.F., Pagh, R.: Cuckoo hashing. J. Algorithms 51, 122–144 (2004)
Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 292–309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_16
Schumm, D., Mukta, R., Paik, H.: Efficient credential revocation using cryptographic accumulators. In: 2023 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), pp. 127–134 (2023)
Tomescu, A., Bhupatiraju, V., Papadopoulos, D., Papamanthou, C., Triandopoulos, N., Devadas, S.: Transparency logs via append-only authenticated dictionaries. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, 11–15 November 2019, pp. 1299–1316. ACM (2019)
Yu, Z., Au, M.H., Yang, R., Lai, J., Xu, Q.: Lattice-based universal accumulator with nonmembership arguments. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 502–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_29
Yeo, K.: Cuckoo hashing in cryptography: optimal parameters, robustness and applications. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14084, pp. 197–230. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_7
Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accumulator. In: 2017 IEEE European Symposium on Security and Privacy, EuroS &P 2017, Paris, France, 26–28 April 2017, pp. 158–173. IEEE (2017)
Acknowledgements
Foteini Baldimtsi and Aayush Yadav were supported by NSF #2143287 and #2247304. Aayush Yadav, Ojaswi Acharya and Dov Gordon were supported by NSF #1942575. Daniel McVicker and Dov Gordon were supported by NSF #1955264.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Acharya, O., Baldimtsi, F., Gordon, S.D., McVicker, D., Yadav, A. (2024). Universal Vector Commitments. In: Galdi, C., Phan, D.H. (eds) Security and Cryptography for Networks. SCN 2024. Lecture Notes in Computer Science, vol 14973. Springer, Cham. https://doi.org/10.1007/978-3-031-71070-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-71070-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71069-8
Online ISBN: 978-3-031-71070-4
eBook Packages: Computer ScienceComputer Science (R0)