Skip to main content

\(\textsf{LR}\)-\(\textsf{OT}\): Leakage-Resilient Oblivious Transfer

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14973))

Included in the following conference series:

  • 196 Accesses

Abstract

Oblivious Transfer (\(\textsf{OT}\)) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol. \(\textsf{OT}\) is typically implemented in software, and one way to accelerate its running time is by using hardware implementations. However, such implementations are vulnerable to side-channel attacks (SCAs). On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more complicated design, and running multiple instances. Consequently, there are no truly practical leakage-resistant \(\textsf{OT}\) protocols yet.

In this paper, we introduce two tailored indistinguishability-based security definitions for leakage-resilient \(\textsf{OT}\), focusing on protecting the sender’s state. Second, we propose a practical semi-honest secure \(\textsf{OT}\) protocol that achieves these security levels while minimizing the assumptions on the protocol’s building blocks and the use of a secret state. Finally, we extend our protocol to support sequential composition and explore efficiency-security tradeoffs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recall that in the security definitions of encryption schemes with leakage, we assume that the adversary knows the challenge ciphertext but has at most some leakage information about the key, here the adversary knows the key and has some information about the challenge ciphertext.

  2. 2.

    For example, if the oracle implements an encryption scheme \(\textsf{Enc}_k(m)\), and the adversary plays a \(\textsf{CPA}\)-game with leakage, the public input is m, chosen by the adversary, while the secret input is the key k. Thus, \(\mathcal {I}^{sec}=\mathcal {K}\), the key-space of the encryption scheme, while \(\mathcal {I}^{pub}=\mathcal {M}\), the message space.

  3. 3.

    Should not be confuse with secret-sharing, here a share merely describe part of the message.

  4. 4.

    In our model, these values are not deleted, but since the corresponding memory cells are not accessed anymore, they cannot be leaked.

  5. 5.

    It is well known that computation with asymmetric primitives leaks far more on each secret-bit of (say) the key as compared to symmetric primitives.

  6. 6.

    We are also inspired by the definition of security in the presence of leakage of the XOR of a pseudorandom value with a message block [9], where we give the leakage of the generation of the random block.

  7. 7.

    If k is unpredictable, then passing through an ideal cipher gives random outputs.

  8. 8.

    It is enough to XOR z with one share and keep all other shares to have an additive output sharing.

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  Google Scholar 

  2. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_24

    Chapter  Google Scholar 

  3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_8

    Chapter  Google Scholar 

  4. Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: STOC (1996)

    Google Scholar 

  5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  6. Bellizia, D., et al.: Spook: sponge-based leakage-resistant authenticated encryption with a masked tweakable block cipher. IACR Trans. Symmetric Cryptol. S1, 295–349 (2020)

    Article  Google Scholar 

  7. Bellizia, D., et al.: Mode-level vs. implementation-level physical security in symmetric cryptography. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 369–400. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_13

    Chapter  Google Scholar 

  8. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Strong authenticity with leakage under weak and falsifiable physical assumptions. In: Liu, Z., Yung, M. (eds.) Inscrypt 2019. LNCS, vol. 12020, pp. 517–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42921-8_31

    Chapter  Google Scholar 

  9. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: Tedt, a leakage-resist AEAD mode for high physical security applications. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1, 256–320 (2020)

    Google Scholar 

  10. Berti, F., Guo, C., Peters, T., Shen, Y., Standaert, F.: Secure message authentication in the presence of leakage and faults. IACR Trans. Symmetric Cryptol. 2023(1), 288–315 (2023)

    Article  Google Scholar 

  11. Berti, F., Hazay, C., Levi, I.: LR-OT: leakage-resilient oblivious transfer. Cryptology ePrint Archive, Paper 2024/1143

    Google Scholar 

  12. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_15

    Chapter  Google Scholar 

  13. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of internal encodings - revisiting the DCA attack on white-box cryptography. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 103–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_6

    Chapter  Google Scholar 

  14. Bogdanov, A., Ishai, Y., Srinivasan, A.: Unconditionally secure computation against low-complexity leakage. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 387–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_14

    Chapter  Google Scholar 

  15. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: SIGSAC (2019)

    Google Scholar 

  16. Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure against continual memory leakage. In: STOC (2012)

    Google Scholar 

  17. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.-X.: Hardware private circuits: from trivial composition to full verification. IEEE Trans. Comput. 70(10), 1677–1690 (2020)

    Article  MathSciNet  Google Scholar 

  18. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_1

    Chapter  Google Scholar 

  19. Costes, N., Stam, M.: Pincering SKINNY by exploiting slow diffusion enhancing differential power analysis with cluster graph inference. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023)

    Google Scholar 

  20. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_17

    Chapter  Google Scholar 

  21. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authenticated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_8

    Chapter  Google Scholar 

  22. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptol. 1, 80–105 (2017)

    Article  Google Scholar 

  23. Dodis, Y., Steinberger, J.: Message authentication codes from unpredictable block ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_16

    Chapter  Google Scholar 

  24. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS (2008)

    Google Scholar 

  25. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 205–210. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_19

    Chapter  Google Scholar 

  26. Goldreich, O.: The Foundations of Cryptography. Basic Applications, vol. 2 (2004)

    Google Scholar 

  27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: STOC (1987

    Google Scholar 

  28. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Authenticated encryption with nonce misuse and physical leakage: definitions, separation results and first construction. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 150–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_8

    Chapter  Google Scholar 

  29. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys. In: USENIX (2008)

    Google Scholar 

  30. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography (2010)

    Google Scholar 

  31. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: STOC

    Google Scholar 

  32. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  33. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  34. Järvinen, K., Balasch, J.: Single-trace side-channel attacks on scalar multiplications with precomputations. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 137–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8_9

    Chapter  Google Scholar 

  35. Kabin, I., Dyka, Z., Klann, D., Langendoerfer, P.: Horizontal attacks against ECC: from simulations to ASIC. In: Fournaris, A.P., et al. (eds.) IOSEC/MSTEC/FINSEC -2019. LNCS, vol. 11981, pp. 64–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42051-2_5

    Chapter  Google Scholar 

  36. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. On the Work of Shafi Goldwasser and Silvio Micali. ACM, In Providing Sound Foundations for Cryptography (2019)

    Book  Google Scholar 

  37. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition (2014)

    Google Scholar 

  38. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)

    Google Scholar 

  39. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  40. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  41. Levi, I., Hazay, C.: Garbled circuits from an SCA perspective free XOR can be quite expensive. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023)

    Google Scholar 

  42. Longo, J., Martin, D.P., Oswald, E., Page, D., Stam, M., Tunstall, M.J.: Simulatable leakage: analysis, pitfalls, and new constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 223–242. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_12

    Chapter  Google Scholar 

  43. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16

    Chapter  Google Scholar 

  44. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: CCS, pp. 96–108 (2015)

    Google Scholar 

  45. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  46. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17

    Chapter  Google Scholar 

  47. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report, Harvard Center for Research in Computer Technology (1981)

    Google Scholar 

  48. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudorandom correlation generators from LPN. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14084, pp. 602–632. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_19

    Chapter  Google Scholar 

  49. Ravi, P., Poussier, R., Bhasin, S., Chattopadhyay, A.: On configurable SCA countermeasures against single trace attacks for the NTT. In: Batina, L., Picek, S., Mondal, M. (eds.) SPACE 2020. LNCS, vol. 12586, pp. 123–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66626-2_7

    Chapter  Google Scholar 

  50. Roy, L.: Softspokenot: Communication-computation tradeoffs in OT extension. IACR Cryptol. ePrint Arch, p. 192 (2022)

    Google Scholar 

  51. Roy, P.S., Adhikari, A.: One-sided leakage-resilient privacy only two-message oblivious transfer. J. Inf. Secur. Appl. 295–300 (2014)

    Google Scholar 

  52. Salomon, D., Levi, I.: MaskSIMD-lib: on the performance gap of a generic C optimized assembly and wide vector extensions for masked software with an Ascon-p test case. J. Cryptogr. Eng. 13(3), 325–342 (2023)

    Article  Google Scholar 

  53. Salomon, D., Weiss, A., Levi, I.: Improved filtering techniques for single-and multi-trace side-channel analysis. Cryptography 5(3), 24 (2021)

    Article  Google Scholar 

  54. Staib, M., Moradi, A.: Deep learning side-channel collision attack. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023)

    Google Scholar 

  55. Tang, Y., Gong, Z., Chen, J., Xie, N.: Higher-order DCA attacks on white-box implementations with masking and shuffling countermeasures. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023)

    Google Scholar 

  56. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_14

    Chapter  Google Scholar 

  57. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986)

    Google Scholar 

  58. You, S., Kuhn, M.G., Sarkar, S., Hao, F.: Low trace-count template attacks on 32-bit implementations of ASCON AEAD. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023)

    Google Scholar 

  59. Yu, Y., Standaert, F., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: CCS, pp. 141–151 (2010)

    Google Scholar 

Download references

Acknowledgments

Francesco Berti and Itamar Levi were founded by the Israel Science Foundation (ISF) grant 2569/21. Carmit Hazay was partially supported by the Algorand Centres of Excellence programme managed by Algorand Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Algorand Foundation, and the United States-Israel Binational Science Foundation (BSF) through Grant No. 2020277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Berti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berti, F., Hazay, C., Levi, I. (2024). \(\textsf{LR}\)-\(\textsf{OT}\): Leakage-Resilient Oblivious Transfer. In: Galdi, C., Phan, D.H. (eds) Security and Cryptography for Networks. SCN 2024. Lecture Notes in Computer Science, vol 14973. Springer, Cham. https://doi.org/10.1007/978-3-031-71070-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71070-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71069-8

  • Online ISBN: 978-3-031-71070-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics