Abstract
This paper presents our extension for the BDI-ABM interface, which provides a connection layer for BDI agents to interact with Agent-based Models (ABM) such as simulation platforms in an integrated Multi-Agent System (MAS). We introduce a new version of the ABM-Jadex layer, which allows attaching BDI Agents developed with Jadex, an Agent Development Framework, to the MATSim traffic simulation environment. We introduce cognitive vehicle agents capable of negotiating among themselves via the contract net protocol. The scalability of the integrated MAS architecture is tested in the first experiments simulating the behavior of a fleet of autonomous e-trikes.
An earlier version of this paper had been presented at the LWDA 2023 workshop in Marburg, Germany [23].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://www.grab.com/, last access: 04/16/2024.
- 2.
https://www.grab.com/sg/inside-grab/stories/grabshare-weve-revamped-our-carpooling-service/, last access: 04/16/2024.
- 3.
https://sumo.dlr.de/docs/index.html, last access: 04/16/2024).
- 4.
version 15.0, https://github.com/matsim-org/matsim-libs (last access: 04/16/2024).
- 5.
https://data.deutschebahn.com/dataset/data-call-a-bike.html, last access: 03/05/2024.
- 6.
- 7.
“https://github.com/oemer95/ees” & https://github.com/oemer95/bdi-abm-integration, branch: “emas24”.
References
Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)
Ahadi, R., Ketter, W., Collins, J., Daina, N.: Siting and sizing of charging infrastructure for shared autonomous electric fleets. In: AAMAS (2021)
Axhausen, K.W., ETH Zürich: The Multi-Agent Transport Simulation MATSim. Ubiquity Press (2016)
Bazzan, A.L., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29(03), 375–403 (2014)
Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with JADE. Wiley series in agent technology, Chichester, reprint. edn. (2008)
Bischoff, J., Kaddoura, I., Maciejewski, M., Nagel, K.: Simulation-based optimization of service areas for pooled ride-hailing operators. Procedia Comput. Sci. 130, 816–823 (2018)
Bischoff, J., Maciejewski, M.: Proactive empty vehicle rebalancing for Demand Responsive Transport services. Procedia Comput. Sci. 170, 739–744 (2020)
Bischoff, J., Maciejewski, M., Nagel, K.: City-wide shared taxis: a simulation study in Berlin. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 275–280. IEEE, Yokohama (Oct 2017)
Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent systems. Computers 10(2), 16 (2021)
Davoust, A., et al.: An architecture for integrating BDI agents with a simulation environment. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS (LNAI), vol. 12058, pp. 67–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51417-4_4
Dlugosch, O., Brandt, T., Neumann, D.: Combining analytics and simulation methods to assess the impact of shared, autonomous electric vehicles on sustainable urban mobility. Inform. Manage. 59, 103285 (2020)
Dorer, K., Calisti, M.: An adaptive solution to dynamic transport optimization, pp. 45–51. AAMAS 2005, Association for Computing Machinery, New York, NY, USA (2005)
Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)
Erduran, Ö.I.: Machine learning for cognitive BDI agents: a compact survey. In: ICAART (1), pp. 257–268 (2023)
Erduran, Ö.I., Mauri, M., Minor, M.: Negotiation in ride-hailing between cooperating BDI agents. In: Proceedings of the 14th International Conference on Agents and Artificial Intelligence, vol. Volume X, pp. 425 –432. Scitepress, Online Streaming (2022)
Erduran, Ö.I., Minor, M., Hedrich, L., Tarraf, A., Ruehl, F., Schroth, H.: Multi-agent learning for energy-aware placement of autonomous vehicles. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1671–1678. IEEE, Boca Raton, FL, USA (2019)
Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL 1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49057-4_1
Kaddoura, I., Schlenther, T.: The impact of trip density on the fleet size and pooling rate of ride-hailing services: a simulation study. Procedia Comput. Sci. 184, 674–679 (2021)
J.P.M., Pischel, M.: Cooperative transportation scheduling: an applicationdomain for dai. Appl. Artif. Intell. 10(1), 1–34 (1996)
Klügl, F.: Multiagentensysteme. In: Handbuch der Künstlichen Intelligenz, pp. 755–781. De Gruyter Oldenbourg, Berlin/Boston, 6. auflage edn. (2021)
Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015)
Malas, A., Falou, S.E., Falou, M.E., Itmi, M., Cardon, A.: Solving on-demand transport problem through negotiation. In: Proceedings of the Summer Computer Simulation Conference, pp. 1–7 (2016)
Mauri, M., Erduran, Ö.I., Anh, T.P.D., Minor, M.: Integrating BDI Agents with the MATSim traffic simulation for autonomous mobility on demand. In: Leyer, M., Wichmann, J. (eds.) Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings, Marburg, Germany, October 9-11, 2023. CEUR Workshop Proceedings, vol. 3630, pp. 247–258. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3630/LWDA2023-paper23.pdf
North, M., et al.: Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model. 1 (2013). https://doi.org/10.1186/2194-3206-1-3
Padgham, L., Nagel, K., Singh, D., Chen, Q.: Integrating BDI Agents into a MATSim Simulation. ECAI (2014)
Padgham, L., Singh, D.: Making MATSim agents smarter with the belief-desire-intention framework. In: ETH Zürich, Horni, A., Nagel, K., TU Berlin (eds.) The Multi-Agent Transport Simulation MATSim, pp. 201–210. Ubiquity Press (2016)
Pokahr, A.: Aktive Komponenten: Ein integrierter Entwicklungsansatz für verteilte Systeme. Ph.D. thesis, Hamburg University (2017)
Pokahr, A., Braubach, L., Jander, K.: The Jadex Project: Programming Model. In: Ganzha, M., Jain, L. (eds.) Multiagent Systems and Applications: Volume 1:Practice and Experience, pp. 21–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33323-1_2
Ricci, A., Croatti, A., Bordini, R.H., Hübner, J.F., Boissier, O.: Exploiting Simulation for MAS Programming and Engineering-The JaCaMo-sim Platform. EMAS, p. 19 (2020)
Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192 (2011)
Sadeghi Garjan, M., Chaanine, T., Pasquale, C., Paolo Pastore, V., Ferrando, A.: Agamas: A new agent-oriented traffic simulation framework for sumo. In: Malvone, V., Murano, A. (eds.) Multi-Agent Systems, pp. 396–405. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43264-4_25
Silva, L.d., Meneguzzi, F., Logan, B.: BDI agent architectures: a survey. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 4914–4921. International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan (2020)
Singh, D., Ashton, P., Kuligowski, E., Pawan, G.: Bushfire evacuation decision support system use in incident management training. Aust. J. Emerg. Managem. 37, 73–76 (2022)
Singh, D., Padgham, L.: Emergency Evacuation Simulator (EES) - a tool for planning community evacuations in Australia. In: Proceedings of the Twenty-Sixth IJCAI, pp. 5249–5251. Melbourne, Australia (Aug 2017)
Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based simulation platforms. Auton. Agent. Multi-Agent Syst. 30(6), 1050–1071 (2016)
Singh, D., Padgham, L., Nagel, K.: Using MATSim as a component in dynamic agent-based micro-simulations. In: Engineering Multi-Agent Systems, vol. 12058, pp. 85–105. Springer International Publishing, Cham (2020)
Smith: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. C-29(12), 1104–1113 (1980)
Soares, G., Kokkinogenis, Z., Macedo, J.L., Rossetti, R.J.F.: Agent-Based Traffic Simulation Using SUMO and JADE: An Integrated Platform for Artificial Transportation Systems. In: Behrisch, M., Krajzewicz, D., Weber, M. (eds.) Simulation of Urban Mobility, vol. 8594, pp. 44–61. Springer, Berlin Heidelberg (2014). https://doi.org/10.1007/978-3-662-45079-6_4
Timóteo, I.J., Araújo, M.R., Rossetti, R.J., Oliveira, E.C.: TraSMAPI: an API oriented towards multi-agent systems real-time interaction with multiple traffic simulators. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1183–1188 (2010)
W Axhausen, K., Horni, A., Nagel, K.: The multi-agent transport simulation MATSim. Ubiquity Press (2016)
Zardini, G., Lanzetti, N., Pavone, M., Frazzoli, E.: Analysis and control of autonomous mobility-on-demand systems. Ann. Rev. Control Robot. Auton. Syst. 5, 633–658 (2021). publisher: Annual Reviews
Zhang, H., Sheppard, C.J., Lipman, T.E., Zeng, T., Moura, S.J.: Charging infrastructure demands of shared-use autonomous electric vehicles in urban areas. Transp. Res. Part D: Trans. Environ. 78, 102210 (2020)
Zwick, F., Kuehnel, N., Moeckel, R., Axhausen, K.W.: Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise. Transp. Res. Part D: Transp. Environ. 90, 102673 (2021)
Acknowledgements
The authors would like to thank Mahkamjon Raupov and Olena Tsvietkova who contributed to the implementation and evaluation of the work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mauri, M., Erduran, Ö.I., Minor, M. (2024). Jadex BDI Agents Integrated with MATSim for Autonomous Mobility on Demand. In: Briola, D., Cardoso, R.C., Logan, B. (eds) Engineering Multi-Agent Systems. EMAS 2024. Lecture Notes in Computer Science(), vol 15152. Springer, Cham. https://doi.org/10.1007/978-3-031-71152-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-71152-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71151-0
Online ISBN: 978-3-031-71152-7
eBook Packages: Computer ScienceComputer Science (R0)