Skip to main content

Jadex BDI Agents Integrated with MATSim for Autonomous Mobility on Demand

  • Conference paper
  • First Online:
Engineering Multi-Agent Systems (EMAS 2024)

Abstract

This paper presents our extension for the BDI-ABM interface, which provides a connection layer for BDI agents to interact with Agent-based Models (ABM) such as simulation platforms in an integrated Multi-Agent System (MAS). We introduce a new version of the ABM-Jadex layer, which allows attaching BDI Agents developed with Jadex, an Agent Development Framework, to the MATSim traffic simulation environment. We introduce cognitive vehicle agents capable of negotiating among themselves via the contract net protocol. The scalability of the integrated MAS architecture is tested in the first experiments simulating the behavior of a fleet of autonomous e-trikes.

An earlier version of this paper had been presented at the LWDA 2023 workshop in Marburg, Germany [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.grab.com/, last access: 04/16/2024.

  2. 2.

    https://www.grab.com/sg/inside-grab/stories/grabshare-weve-revamped-our-carpooling-service/, last access: 04/16/2024.

  3. 3.

    https://sumo.dlr.de/docs/index.html, last access: 04/16/2024).

  4. 4.

    version 15.0, https://github.com/matsim-org/matsim-libs (last access: 04/16/2024).

  5. 5.

    https://data.deutschebahn.com/dataset/data-call-a-bike.html, last access: 03/05/2024.

  6. 6.

    https://openstreetmap.org.

  7. 7.

    https://github.com/oemer95/ees” & https://github.com/oemer95/bdi-abm-integration, branch: “emas24”.

References

  1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)

    Article  Google Scholar 

  2. Ahadi, R., Ketter, W., Collins, J., Daina, N.: Siting and sizing of charging infrastructure for shared autonomous electric fleets. In: AAMAS (2021)

    Google Scholar 

  3. Axhausen, K.W., ETH Zürich: The Multi-Agent Transport Simulation MATSim. Ubiquity Press (2016)

    Google Scholar 

  4. Bazzan, A.L., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29(03), 375–403 (2014)

    Article  Google Scholar 

  5. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with JADE. Wiley series in agent technology, Chichester, reprint. edn. (2008)

    Google Scholar 

  6. Bischoff, J., Kaddoura, I., Maciejewski, M., Nagel, K.: Simulation-based optimization of service areas for pooled ride-hailing operators. Procedia Comput. Sci. 130, 816–823 (2018)

    Article  Google Scholar 

  7. Bischoff, J., Maciejewski, M.: Proactive empty vehicle rebalancing for Demand Responsive Transport services. Procedia Comput. Sci. 170, 739–744 (2020)

    Article  Google Scholar 

  8. Bischoff, J., Maciejewski, M., Nagel, K.: City-wide shared taxis: a simulation study in Berlin. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 275–280. IEEE, Yokohama (Oct 2017)

    Google Scholar 

  9. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent systems. Computers 10(2), 16 (2021)

    Article  Google Scholar 

  10. Davoust, A., et al.: An architecture for integrating BDI agents with a simulation environment. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS (LNAI), vol. 12058, pp. 67–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51417-4_4

    Chapter  Google Scholar 

  11. Dlugosch, O., Brandt, T., Neumann, D.: Combining analytics and simulation methods to assess the impact of shared, autonomous electric vehicles on sustainable urban mobility. Inform. Manage. 59, 103285 (2020)

    Google Scholar 

  12. Dorer, K., Calisti, M.: An adaptive solution to dynamic transport optimization, pp. 45–51. AAMAS 2005, Association for Computing Machinery, New York, NY, USA (2005)

    Google Scholar 

  13. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  14. Erduran, Ö.I.: Machine learning for cognitive BDI agents: a compact survey. In: ICAART (1), pp. 257–268 (2023)

    Google Scholar 

  15. Erduran, Ö.I., Mauri, M., Minor, M.: Negotiation in ride-hailing between cooperating BDI agents. In: Proceedings of the 14th International Conference on Agents and Artificial Intelligence, vol. Volume X, pp. 425 –432. Scitepress, Online Streaming (2022)

    Google Scholar 

  16. Erduran, Ö.I., Minor, M., Hedrich, L., Tarraf, A., Ruehl, F., Schroth, H.: Multi-agent learning for energy-aware placement of autonomous vehicles. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1671–1678. IEEE, Boca Raton, FL, USA (2019)

    Google Scholar 

  17. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL 1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49057-4_1

    Chapter  Google Scholar 

  18. Kaddoura, I., Schlenther, T.: The impact of trip density on the fleet size and pooling rate of ride-hailing services: a simulation study. Procedia Comput. Sci. 184, 674–679 (2021)

    Article  Google Scholar 

  19. J.P.M., Pischel, M.: Cooperative transportation scheduling: an applicationdomain for dai. Appl. Artif. Intell. 10(1), 1–34 (1996)

    Google Scholar 

  20. Klügl, F.: Multiagentensysteme. In: Handbuch der Künstlichen Intelligenz, pp. 755–781. De Gruyter Oldenbourg, Berlin/Boston, 6. auflage edn. (2021)

    Google Scholar 

  21. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015)

    Article  Google Scholar 

  22. Malas, A., Falou, S.E., Falou, M.E., Itmi, M., Cardon, A.: Solving on-demand transport problem through negotiation. In: Proceedings of the Summer Computer Simulation Conference, pp. 1–7 (2016)

    Google Scholar 

  23. Mauri, M., Erduran, Ö.I., Anh, T.P.D., Minor, M.: Integrating BDI Agents with the MATSim traffic simulation for autonomous mobility on demand. In: Leyer, M., Wichmann, J. (eds.) Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings, Marburg, Germany, October 9-11, 2023. CEUR Workshop Proceedings, vol. 3630, pp. 247–258. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3630/LWDA2023-paper23.pdf

  24. North, M., et al.: Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model. 1 (2013). https://doi.org/10.1186/2194-3206-1-3

  25. Padgham, L., Nagel, K., Singh, D., Chen, Q.: Integrating BDI Agents into a MATSim Simulation. ECAI (2014)

    Google Scholar 

  26. Padgham, L., Singh, D.: Making MATSim agents smarter with the belief-desire-intention framework. In: ETH Zürich, Horni, A., Nagel, K., TU Berlin (eds.) The Multi-Agent Transport Simulation MATSim, pp. 201–210. Ubiquity Press (2016)

    Google Scholar 

  27. Pokahr, A.: Aktive Komponenten: Ein integrierter Entwicklungsansatz für verteilte Systeme. Ph.D. thesis, Hamburg University (2017)

    Google Scholar 

  28. Pokahr, A., Braubach, L., Jander, K.: The Jadex Project: Programming Model. In: Ganzha, M., Jain, L. (eds.) Multiagent Systems and Applications: Volume 1:Practice and Experience, pp. 21–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33323-1_2

  29. Ricci, A., Croatti, A., Bordini, R.H., Hübner, J.F., Boissier, O.: Exploiting Simulation for MAS Programming and Engineering-The JaCaMo-sim Platform. EMAS, p. 19 (2020)

    Google Scholar 

  30. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192 (2011)

    Article  Google Scholar 

  31. Sadeghi Garjan, M., Chaanine, T., Pasquale, C., Paolo Pastore, V., Ferrando, A.: Agamas: A new agent-oriented traffic simulation framework for sumo. In: Malvone, V., Murano, A. (eds.) Multi-Agent Systems, pp. 396–405. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43264-4_25

    Chapter  Google Scholar 

  32. Silva, L.d., Meneguzzi, F., Logan, B.: BDI agent architectures: a survey. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 4914–4921. International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan (2020)

    Google Scholar 

  33. Singh, D., Ashton, P., Kuligowski, E., Pawan, G.: Bushfire evacuation decision support system use in incident management training. Aust. J. Emerg. Managem. 37, 73–76 (2022)

    Google Scholar 

  34. Singh, D., Padgham, L.: Emergency Evacuation Simulator (EES) - a tool for planning community evacuations in Australia. In: Proceedings of the Twenty-Sixth IJCAI, pp. 5249–5251. Melbourne, Australia (Aug 2017)

    Google Scholar 

  35. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based simulation platforms. Auton. Agent. Multi-Agent Syst. 30(6), 1050–1071 (2016)

    Article  Google Scholar 

  36. Singh, D., Padgham, L., Nagel, K.: Using MATSim as a component in dynamic agent-based micro-simulations. In: Engineering Multi-Agent Systems, vol. 12058, pp. 85–105. Springer International Publishing, Cham (2020)

    Google Scholar 

  37. Smith: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. C-29(12), 1104–1113 (1980)

    Google Scholar 

  38. Soares, G., Kokkinogenis, Z., Macedo, J.L., Rossetti, R.J.F.: Agent-Based Traffic Simulation Using SUMO and JADE: An Integrated Platform for Artificial Transportation Systems. In: Behrisch, M., Krajzewicz, D., Weber, M. (eds.) Simulation of Urban Mobility, vol. 8594, pp. 44–61. Springer, Berlin Heidelberg (2014). https://doi.org/10.1007/978-3-662-45079-6_4

    Chapter  Google Scholar 

  39. Timóteo, I.J., Araújo, M.R., Rossetti, R.J., Oliveira, E.C.: TraSMAPI: an API oriented towards multi-agent systems real-time interaction with multiple traffic simulators. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1183–1188 (2010)

    Google Scholar 

  40. W Axhausen, K., Horni, A., Nagel, K.: The multi-agent transport simulation MATSim. Ubiquity Press (2016)

    Google Scholar 

  41. Zardini, G., Lanzetti, N., Pavone, M., Frazzoli, E.: Analysis and control of autonomous mobility-on-demand systems. Ann. Rev. Control Robot. Auton. Syst. 5, 633–658 (2021). publisher: Annual Reviews

    Google Scholar 

  42. Zhang, H., Sheppard, C.J., Lipman, T.E., Zeng, T., Moura, S.J.: Charging infrastructure demands of shared-use autonomous electric vehicles in urban areas. Transp. Res. Part D: Trans. Environ. 78, 102210 (2020)

    Google Scholar 

  43. Zwick, F., Kuehnel, N., Moeckel, R., Axhausen, K.W.: Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise. Transp. Res. Part D: Transp. Environ. 90, 102673 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mahkamjon Raupov and Olena Tsvietkova who contributed to the implementation and evaluation of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mauri, M., Erduran, Ö.I., Minor, M. (2024). Jadex BDI Agents Integrated with MATSim for Autonomous Mobility on Demand. In: Briola, D., Cardoso, R.C., Logan, B. (eds) Engineering Multi-Agent Systems. EMAS 2024. Lecture Notes in Computer Science(), vol 15152. Springer, Cham. https://doi.org/10.1007/978-3-031-71152-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71152-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71151-0

  • Online ISBN: 978-3-031-71152-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics