Skip to main content

Leveraging Neurosymbolic AI for Slice Discovery

  • Conference paper
  • First Online:
Neural-Symbolic Learning and Reasoning (NeSy 2024)

Abstract

While remarkable recent developments in deep neural networks have significantly contributed to advancing the state-of-the-art in Computer Vision (CV), several studies have also shown their limitations and defects. In particular, CV models often make systematic errors on important subsets of data called slices, which are groups of data sharing a set of attributes. The slice discovery problem involves detecting semantically meaningful slices on which the model performs poorly, called rare slices. We propose a modular Neurosymbolic AI approach whose distinct advantage is the extraction of human-readable logical rules that describe rare slices, and thus enhances explainability of CV models. To this end, we present a methodology to induce rare slice occurrences in a model. Experiments on datasets from our data generator leveraging on Super-CLEVR show that the approach can correctly identify rare slices and produce logical rules describing them. The rules can be fruitfully used to generate new training data to mend model behavior or may be integrated into the model to enhance its inference capabilities. (The code for reproducing our experiments is available as an online repository: https://gitlab.tuwien.ac.at/kbs/nesy-ai/ilp4sd).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badgeley, M.A., et al.: Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Digit. Med. 2, 31 (2019). https://doi.org/10.1038/S41746-019-0105-1

  2. Chung, Y., Kraska, T., Polyzotis, N., Tae, K.H., Whang, S.E.: Slice finder: automated data slicing for model validation. In: 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pp. 1550–1553. IEEE (2019). https://doi.org/10.1109/ICDE.2019.00139

  3. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). https://www.blender.org/

  4. Cropper, A., Dumancic, S.: Inductive logic programming at 30: a new introduction. J. Artif. Intell. Res. 74, 765–850 (2022). https://doi.org/10.1613/JAIR.1.13507

    Article  MathSciNet  Google Scholar 

  5. Cropper, A., Dumancic, S., Evans, R., Muggleton, S.H.: Inductive logic programming at 30. Mach. Learn. 111(1), 147–172 (2022). https://doi.org/10.1007/S10994-021-06089-1

    Article  MathSciNet  Google Scholar 

  6. d’Eon, G., d’Eon, J., Wright, J.R., Leyton-Brown, K.: The spotlight: a general method for discovering systematic errors in deep learning models. In: FAccT ’22: 2022 ACM Conference on Fairness, Accountability, and Transparency, Seoul, Republic of Korea, June 21 - 24, pp. 1962–1981 (2022). ACM (2022). https://doi.org/10.1145/3531146.3533240

  7. Eyuboglu, S., et al.: Domino: discovering systematic errors with cross modal embeddings. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net (2022). https://openreview.net/forum?id=FPCMqjI0jXN

  8. Hedderich, M.A., Fischer, J., Klakow, D., Vreeken, J.: Label-descriptive patterns and their application to characterizing classification errors. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., Sabato, S. (eds.) International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA. Proceedings of Machine Learning Research, vol. 162, pp. 8691–8707. PMLR (2022). https://proceedings.mlr.press/v162/hedderich22a.html

  9. Hitzler, P., Sarker, M.K. (eds.): Neuro-Symbolic Artificial Intelligence: The State of the Art, Frontiers in Artificial Intelligence and Applications, vol. 342. IOS Press (2021). https://doi.org/10.3233/FAIA342

  10. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick, R.B.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 1988–1997. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.215

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  12. Law, M., Russo, A., Broda, K.: The ILASP system for learning Answer Set Programs (2015). www.ilasp.com

  13. Law, M., Russo, A., Broda, K.: The ILASP system for inductive learning of answer set programs (2020). CoRR abs/2005.00904. https://arxiv.org/abs/2005.00904

  14. Li, H., et al.: Scene graph generation: a comprehensive survey. Neurocomputing 566, 127052 (2024). https://doi.org/10.1016/J.NEUCOM.2023.127052

    Article  Google Scholar 

  15. Li, Z., et al.: Super-CLEVR: a virtual benchmark to diagnose domain robustness in visual reasoning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 14963–14973. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.01437

  16. Merkys, I.: crunchiness/lernd: Lernd - implementation of \(\partial \)ilp (2020). https://doi.org/10.5281/zenodo.4294059, https://github.com/crunchiness/lernd

  17. Moriyama, S., Watanabe, K., Inoue, K., Takemura, A.: MOD-CL: multi-label object detection with constrained loss (2024). CoRR abs/2403.07885. https://doi.org/10.48550/ARXIV.2403.07885

  18. Muggleton, S.H.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991). https://doi.org/10.1007/BF03037089

    Article  Google Scholar 

  19. Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C.: Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Ghassemi, M. (ed.) ACM CHIL ’20: ACM Conference on Health, Inference, and Learning, Toronto, Ontario, Canada, April 2-4, 2020 [delayed], pp. 151–159. ACM (2020). https://doi.org/10.1145/3368555.3384468

  20. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize to ImageNet? In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 5389–5400. PMLR (2019). http://proceedings.mlr.press/v97/recht19a.html

  21. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, pp. 779–788 (2016). IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.91

  22. Sagadeeva, S., Boehm, M.: SliceLine: fast, Linear-Algebra-based Slice Finding for ML Model Debugging. In: Li, G., Li, Z., Idreos, S., Srivastava, D. (eds.) SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, pp. 2290–2299. ACM (2021). https://doi.org/10.1145/3448016.3457323

  23. Winkler, J.K., et al.: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 155(10), 1135–1141 (2019). https://pubmed.ncbi.nlm.nih.gov/31411641/

  24. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving systems. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pp. 132–142. ACM (2018). https://doi.org/10.1145/3238147.3238187

Download references

Acknowledgments

The project leading to this research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101034440. Additionally, this work was supported by funding from the Bosch Center for AI (BCAI) in Renningen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Collevati .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collevati, M., Eiter, T., Higuera, N. (2024). Leveraging Neurosymbolic AI for Slice Discovery. In: Besold, T.R., d’Avila Garcez, A., Jimenez-Ruiz, E., Confalonieri, R., Madhyastha, P., Wagner, B. (eds) Neural-Symbolic Learning and Reasoning. NeSy 2024. Lecture Notes in Computer Science(), vol 14979. Springer, Cham. https://doi.org/10.1007/978-3-031-71167-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71167-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71166-4

  • Online ISBN: 978-3-031-71167-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics