Skip to main content

Enhancing GPT-Based Planning Policies by Model-Based Plan Validation

  • Conference paper
  • First Online:
Neural-Symbolic Learning and Reasoning (NeSy 2024)

Abstract

Despite Large Language Models (LLMs) have revolutionised Natural Language Processing (NLP), their capability of performing logical reasoning and automated planning is still debated. In this context, the state of the art is PlanGPT, a GPT-2 model specifically trained for planning tasks. This recent approach provides GPT-based planning policies with remarkable performance, but it can generate invalid plans containing violated action preconditions or unsatisfied goals. To address this limitation, we propose an extension of PlanGPT that integrates a plan validator into the generation process. The validator is exploited to prune invalid plan prefixes during the GPT token generation, obtaining a more robust and powerful solution to planning via GPT. We empirically evaluate the effectiveness of our approach and demonstrate its potential in various planning domains.

N. Rossetti was enrolled in the National Doctorate on AI conducted by Sapienza, University of Rome with the University of Brescia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, D., Kambhampati, S.: Learning and leveraging verifiers to improve planning capabilities of pre-trained language models. CoRR abs/2305.17077 (2023)

    Google Scholar 

  2. Chiari, M., Gerevini, A.E., Loreggia, A., Putelli, L., Serina, I.: Fast and slow goal recognition. In: Dastani, M., Sichman, J.S., Alechina, N., Dignum, V. (eds.) Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024, Auckland, New Zealand, 6–10 May 2024, pp. 354–362. ACM (2024)

    Google Scholar 

  3. Chiari, M., Gerevini, A.E., Percassi, F., Putelli, L., Serina, I., Olivato, M.: Goal recognition as a deep learning task: the GRNet approach. In: Koenig, S., Stern, R., Vallati, M. (eds.) Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling, Prague, Czech Republic, 8–13 July 2023, pp. 560–568. AAAI Press (2023)

    Google Scholar 

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1), pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  5. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs in LPG. J. Artif. Intell. Res. 20, 239–290 (2003). https://doi.org/10.1613/jair.1183

    Article  Google Scholar 

  6. Gerevini, A., Serina, I.: LPG: a planner based on local search for planning graphs with action costs. In: AIPS, pp. 13–22. AAAI Press (2002)

    Google Scholar 

  7. Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., Berant, J.: Did Aristotle use a laptop? A question answering benchmark with implicit reasoning strategies. Trans. Assoc. Comput. Linguistics 9, 346–361 (2021)

    Article  Google Scholar 

  8. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: ICTAI, pp. 294–301. IEEE Computer Society (2004)

    Google Scholar 

  9. Hu, Y., De Giacomo, G.: Generalized planning: synthesizing plans that work for multiple environments. In: IJCAI, pp. 918–923. IJCAI Org (2011)

    Google Scholar 

  10. Jiang, Z., Xu, F.F., Araki, J., Neubig, G.: How can we know what language models know. Trans. Assoc. Comput. Linguistics 8, 423–438 (2020)

    Article  Google Scholar 

  11. McDermott, D., G., et al.: PDDL-the planning domain definition language (1998). https://api.semanticscholar.org/CorpusID:59656859

  12. Pallagani, V., et al.: Plansformer tool: demonstrating generation of symbolic plans using transformers. In: IJCAI, pp. 7158–7162. IJCAI Org. (2023)

    Google Scholar 

  13. Petroni, F., et al.: Language models as knowledge bases? In: EMNLP/IJCNLP (1), pp. 2463–2473. Association for Computational Linguistics (2019)

    Google Scholar 

  14. Radford, A., Narasimhan, K.: Improving language understanding by generative pre-training. In: preprint (2018). api.semanticscholar.org/CorpusID:49313245

    Google Scholar 

  15. Rossetti, N., et al.: Learning general policies for planning through GPT models. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 34, no. 1, pp. 500–508 (2024)

    Google Scholar 

  16. Seipp, J., Torralba, A., Hoffmann, J.: PDDL generators (2022). https://github.com/AI-Planning/pddl-generators

  17. Serina, L., Chiari, M., Gerevini, A.E., Putelli, L., Serina, I.: A preliminary study on BERT applied to automated planning. In: IPS/AI*IA, vol. 3345. CEUR-WS.org (2022)

    Google Scholar 

  18. Srivastava, S., Immerman, N., Zilberstein, S.: Learning generalized plans using abstract counting. In: AAAI, pp. 991–997. AAAI Press (2008)

    Google Scholar 

  19. Srivastava, S., Immerman, N., Zilberstein, S.: A new representation and associated algorithms for generalized planning. Artif. Intell. 175(2), 615–647 (2011)

    Article  MathSciNet  Google Scholar 

  20. Valmeekam, K., Hernandez, A.O., Sreedharan, S., Kambhampati, S.: Large language models still can’t plan (A benchmark for LLMs on planning and reasoning about change). CoRR abs/2206.10498 (2022)

    Google Scholar 

  21. Valmeekam, K., Sreedharan, S., Marquez, M., Hernandez, A.O., Kambhampati, S.: On the planning abilities of large language models (A critical investigation with a proposed benchmark). CoRR abs/2302.06706 (2023)

    Google Scholar 

  22. Vaswani, A., S., et al.: Attention is all you need. In: NIPS, pp. 5998–6008. Curran Associates Inc. (2017)

    Google Scholar 

  23. Wang, Y., Wang, W., Joty, S.R., Hoi, S.C.H.: CodeT5: identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. In: EMNLP (1), pp. 8696–8708. Association for Computational Linguistics (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by EU H2020 project AIPlan4EU (GA 101016442), EU ICT-48 2020 project TAILOR (GA 952215), MUR PRIN project RIPER (No. 20203FFYLK), Climate Change AI project (No. IG-2023-174), and Regione Lombardia through the initiative “Il Piano Lombardia - Interventi per la ripresa economica”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Rossetti or Alfonso Emilio Gerevini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossetti, N., Tummolo, M., Gerevini, A.E., Olivato, M., Putelli, L., Serina, I. (2024). Enhancing GPT-Based Planning Policies by Model-Based Plan Validation. In: Besold, T.R., d’Avila Garcez, A., Jimenez-Ruiz, E., Confalonieri, R., Madhyastha, P., Wagner, B. (eds) Neural-Symbolic Learning and Reasoning. NeSy 2024. Lecture Notes in Computer Science(), vol 14980. Springer, Cham. https://doi.org/10.1007/978-3-031-71170-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71170-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71169-5

  • Online ISBN: 978-3-031-71170-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics