Abstract
Metacognition is the concept of reasoning about an agent’s own internal processes and was originally introduced in the field of developmental psychology. In this position paper, we examine the concept of applying metacognition to artificial intelligence. We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception. We discuss each of these aspects in-turn and explore how neurosymbolic AI (NSAI) can be leveraged to address challenges of metacognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Making sense of raw input: Artif. Intell. 299, 103521 (2021)
Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019)
Andrychowicz, M., et al.: Hindsight experience replay. Adv. Neural Inform. Process. Syst. 30 (2017)
Atkinson, E.: Man crushed to death by robot in south korea (Nov 2023). https://www.bbc.com/news/world-asia-67354709
Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artif. Intell. 303, 103649 (2022)
Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Cornelio, C., Stuehmer, J., Hu, S.X., Hospedales, T.: Learning where and when to reason in neuro-symbolic inference. In: The Eleventh International Conference on Learning Representations (2022)
Cox, M.T.: Metacognition in computation: a selected history. In: AAAI Spring Symposium: Metacognition in Computation, pp. 1–17 (2005)
Cox, M.T., Raja, A.: Metareasoning: Thinking about thinking. MIT Press (2011)
Da, L., Mei, H., Sharma, R., Wei, H.: Uncertainty-aware grounded action transformation towards sim-to-real transfer for traffic signal control. In: 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 1124–1129. IEEE (2023)
Dai, W.Z., Xu, Q., Yu, Y., Zhou, Z.H.: Bridging machine learning and logical reasoning by abductive learning. Adv. Neural Inform. Process. Syst. 32 (2019)
Dalal, A., Sarker, M.K., Barua, A., Hitzler, P.: Explaining deep learning hidden neuron activations using concept induction (2023)
Demetriou, A., Efklides, A., Platsidou, M., Campbell, R.L.: The architecture and dynamics of developing mind: Experiential structuralism as a frame for unifying cognitive developmental theories. Monographs of the society for research in child development, pp. i–202 (1993)
Du, L., Ding, X., Liu, T., Qin, B.: Learning event graph knowledge for abductive reasoning. In: Proc. of the 59th ACK. ACL (Aug 2021)
Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artifi. Intell. Res. 61, 1–64 (2018)
Farivar, C.: Cruise robotaxi dragged woman 20 feet in recent accident, local politician says (Oct 2023). https://www.forbes.com/sites/cyrusfarivar/2023/10/06/cruise-robotaxi-dragged-woman-20-feet-in-recent-accident-local-politician-says/?sh=2d68e761466b
Flavell, J.H.: Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. Am. Psychol. 34(10), 906 (1979)
d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. CoRR (2020)
Giunchiglia, E., Lukasiewicz, T.: Coherent hierarchical multi-label classification networks. In: Proc. of the 34th International Conference of NIUPS, NIPS 2020, Red Hook, NY, USA (2020)
Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020)
Hitzler, P., Sarker, M.K., Eberhart, A. (eds.): Compendium of Neurosymbolic Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 369. IOS Press (2023)
Huang, Y.X., Dai, W.Z., Jiang, Y., Zhou, Z.H.: Enabling knowledge refinement upon new concepts in abductive learning (2023)
Izzo, D., Märtens, M., Pan, B.: A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics 3, 287–299 (2019)
Jayawardana, V., Tang, C., Li, S., Suo, D., Wu, C.: The impact of task underspecification in evaluating deep reinforcement learning. Adv. Neural. Inf. Process. Syst. 35, 23881–23893 (2022)
Kautz, H.A.: The third ai summer: Aaai robert s. engelmore memorial lecture. AI Mag. 43(1), 105–125 (2022)
Kim, J., Kim, J.H., Lee, G.: Gps data-based mobility mode inference model using long-term recurrent convolutional networks. Trans. Res. Part C: Emerging Technol. 135, 103523 (2022)
Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 17816 (2017)
Li, B.H., Hou, B.C., Yu, W.T., Lu, X.B., Yang, C.W.: Applications of artificial intelligence in intelligent manufacturing: a review. Front. Inform. Technol. Electronic Eng. 18, 86–96 (2017)
Mitsopoulos, K., Somers, S., Schooler, J., Lebiere, C., Pirolli, P., Thomson, R.: Toward a psychology of deep reinforcement learning agents using a cognitive architecture. Top. Cogn. Sci. 14(4), 756–779 (2022)
Mok, A.: Chatgpt reportedly made up sexual harassment allegations against a prominent lawyer (Apil 2023). https://www.businessinsider.com/chatgpt-ai-made-up-sexual-harassment-allegations-jonathen-turley-report-2023-4#:~:text=OpenAI’s%20buzzy%20ChatGPT%20falsely%20accused,source%2C%20The%20Washington%20Post%20reported
Shakarian, P., Baral, C., Simari, G.I., Xi, B., Pokala, L.: Neuro Symbolic Reasoning and Learning. Springer Briefs in Computer Science, Springer (2023)
Svenmarck, P., Luotsinen, L., Nilsson, M., Schubert, J.: Possibilities and challenges for artificial intelligence in military applications. In: Proceedings of the NATO Big Data and Artificial Intelligence for Military Decision Making Specialists’Meeting, pp. 1–16 (2018)
Ulam, P., Goel, A., Jones, J., Murdock, W.: Using model-based reflection to guide reinforcement learning. Reasoning, Represent. Learn. Comput. Games 107 (2005)
Wang, D., Yang, Q., Abdul, A., Lim, B.Y.: Designing theory-driven user-centric explainable ai. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2019)
Wei, H., et al.: Honor of kings arena: an environment for generalization in competitive reinforcement learning. Adv. Neural. Inf. Process. Syst. 35, 11881–11892 (2022)
Wei, H., Shakarian, P.: Metacognitive Artificial Intelligence. Cambridge University Press (2024)
Xi, B., Scaria, K., Shakarian, P.: Rule-based error detection and correction to operationalize movement trajectory classification (2023)
Xu, J., Zhang, Z., Friedman, T., Liang, Y., den Broeck, G.V.: A semantic loss function for deep learning with symbolic knowledge (2018)
Ye, K., Chen, T., Wei, H., Zhan, L.: Uncertainty regularized evidential regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38(15), pp. 16460–16468 (2024). https://doi.org/10.1609/aaai.v38i15.29583
Acknowledgement
This work was funded by the Army Research Office (ARO) under grants W911NF2310345 and W911NF2410007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, H., Shakarian, P., Lebiere, C., Draper, B., Krishnaswamy, N., Nirenburg, S. (2024). Metacognitive AI: Framework and the Case for a Neurosymbolic Approach. In: Besold, T.R., d’Avila Garcez, A., Jimenez-Ruiz, E., Confalonieri, R., Madhyastha, P., Wagner, B. (eds) Neural-Symbolic Learning and Reasoning. NeSy 2024. Lecture Notes in Computer Science(), vol 14980. Springer, Cham. https://doi.org/10.1007/978-3-031-71170-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-71170-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71169-5
Online ISBN: 978-3-031-71170-1
eBook Packages: Computer ScienceComputer Science (R0)