Skip to main content

Leveraging Large Language Models for Fact-Checking Farsi News Headlines

  • Conference paper
  • First Online:
Disinformation in Open Online Media (MISDOOM 2024)

Abstract

The proliferation of misinformation demands the development of automated fact-checking systems. Large language models (LLMs), are increasingly being used for academic, legal, and journalistic content writing. This underscores the critical importance of LLMs in distinguishing between factual accuracy and inaccuracy. Hence, understanding the capacities and limitations of LLMs in fact-checking tasks is essential for their usage in information space. While previous research showed the potential of LLMs in fact-checking English news headlines, the extent to which LLMs work well in other languages are mostly unexplored. In this paper, using data from a local fact-checking website, we investigate the performance of close- and open-source LLMs in fact-checking Farsi news headlines. Our results show that in none of the model combinations, the fact-checking accuracy of LLMs exceeds 55%, which is pretty low compared to results reported for English news. While fine-tuning shows promising results for performance gain, and should be explored further in future research, our results underscore the weakness of LLMs in low-resource languages such as Farsi, even when fine-tuned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pypi.org/project/googletrans/.

References

  1. Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  2. Alizadeh, M., et al.: Open-source large language models outperform crowd workers and approach ChatGPT in text-annotation tasks. arXiv preprint arXiv:2307.02179 (2023)

  3. Alizadeh, M., Shapiro, J.N., Buntain, C., Tucker, J.A.: Content-based features predict social media influence operations. Sci. Adv. 6(30), eabb5824 (2020)

    Google Scholar 

  4. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  5. Caramancion, K.M.: News verifiers showdown: a comparative performance evaluation of ChatGPT 3.5, ChatGPT 4.0, Bing AI, and bard in news fact-checking. arXiv preprint arXiv:2306.17176 (2023)

  6. Choi, E.C., Ferrara, E.: Automated claim matching with large language models: empowering fact-checkers in the fight against misinformation. arXiv preprint arXiv:2310.09223 (2023)

  7. Das, A., Liu, H., Kovatchev, V., Lease, M.: The state of human-centered NLP technology for fact-checking. Inf. Process. Manag. 60(2), 103219 (2023)

    Article  Google Scholar 

  8. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: QloRA: efficient finetuning of quantized LLMs (2023)

    Google Scholar 

  9. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: QLoRA: efficient finetuning of quantized LLMs. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  10. DeVerna, M.R., Yan, H.Y., Yang, K.C., Menczer, F.: Artificial intelligence is ineffective and potentially harmful for fact checking. arXiv preprint arXiv:2308.10800 (2023)

  11. Gorrell, G., Bontcheva, K., Derczynski, L., Kochkina, E., Liakata, M., Zubiaga, A.: RumourEval 2019: determining rumour veracity and support for rumours. arXiv preprint arXiv:1809.06683 (2018)

  12. Hoes, E., Altay, S., Bermeo, J.: Leveraging ChatGPT for efficient fact-checking (2023)

    Google Scholar 

  13. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  14. Köhler, J., et al.: Overview of the CLEF-2022 CheckThat! Lab: task 3 on fake news detection. In: CLEF (Working Notes), pp. 404–421 (2022)

    Google Scholar 

  15. Köpf, A., et al.: OpenAssistant conversations – democratizing large language model alignment (2023)

    Google Scholar 

  16. Menczer, F., Crandall, D., Ahn, Y.Y., Kapadia, A.: Addressing the harms of AI-generated inauthentic content. Nat. Mach. Intell. 5(7), 679–680 (2023)

    Article  Google Scholar 

  17. Nakov, P., et al.: Overview of the CLEF-2022 CheckThat! Lab task 1 on identifying relevant claims in tweets. In: 2022 Conference and Labs of the Evaluation Forum, CLEF 2022, pp. 368–392. CEUR Workshop Proceedings (CEUR-WS. org) (2022)

    Google Scholar 

  18. Nakov, P., et al.: Overview of the CLEF–2022 CheckThat! Lab on fighting the covid-19 infodemic and fake news detection. In: Barrón-Cedeño, A., et al. (eds.) CLEF 2022. LNCS, vol. 13390, pp. 495–520. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13643-6_29

  19. Nakov, P., Da San Martino, G., Alam, F., Shaar, S., Mubarak, H., Babulkov, N.: Overview of the CLEF-2022 CheckThat! Lab task 2 on detecting previously fact-checked claims (2022)

    Google Scholar 

  20. Pierri, F., DeVerna, M.R., Yang, K.C., Axelrod, D., Bryden, J., Menczer, F.: One year of covid-19 vaccine misinformation on twitter: longitudinal study (preprint) (2022)

    Google Scholar 

  21. Porter, E., Wood, T.J.: The global effectiveness of fact-checking: Evidence from simultaneous experiments in Argentina, Nigeria, South Africa, and the United Kingdom. Proc. Natl. Acad. Sci. 118(37), e2104235118 (2021)

    Article  Google Scholar 

  22. Quelle, D., Bovet, A.: The perils and promises of fact-checking with large language models. Front. Artif. Intell. 7, 1341697 (2024)

    Article  Google Scholar 

  23. Sawiński, M., et al.: OpenFact at CheckThat! 2023: head-to-head GPT vs. BERT-a comparative study of transformers language models for the detection of check-worthy claims. In: Working Notes of CLEF (2023)

    Google Scholar 

  24. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: Fever: a large-scale dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355 (2018)

  25. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  26. Wei, J., et al.: Finetuned language models are zero-shot learners (2022)

    Google Scholar 

  27. von Werra, L., et al.: TRL: transformer reinforcement learning (2020). https://github.com/huggingface/trl

  28. Yang, C., et al.: Large language models as optimizers. arXiv preprint arXiv:2309.03409 (2023)

  29. Yang, K.C., Singh, D., Menczer, F.: Characteristics and prevalence of fake social media profiles with AI-generated faces. arXiv preprint arXiv:2401.02627 (2024)

Download references

Acknowledgments

We thank Factyar team (an Iranian NGO fact-checking website) for providing easy acess to their fact-checked data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Alizadeh .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no conflict of interest.

Appendix

Appendix

Table 2. Optimized prompt for 3-class problem in both Farsi and translated claims. ‘Farsi’ refers to training samples (claims) that are in the Farsi language, while ‘translated’ indicates that our training samples (claims) have been translated into English.
Table 3. Optimized prompt for 5-class problem in both Farsi and translated claims. ‘Farsi’ refers to training samples (claims) that are in the Farsi language, while ‘translated’ indicates that our training samples (claims) have been translated into English.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dehghani, S. et al. (2024). Leveraging Large Language Models for Fact-Checking Farsi News Headlines. In: Preuss, M., Leszkiewicz, A., Boucher, JC., Fridman, O., Stampe, L. (eds) Disinformation in Open Online Media. MISDOOM 2024. Lecture Notes in Computer Science, vol 15175. Springer, Cham. https://doi.org/10.1007/978-3-031-71210-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71210-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71209-8

  • Online ISBN: 978-3-031-71210-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics