Skip to main content

An Approach to Soft Jumping Robots

  • Conference paper
  • First Online:
Walking Robots into Real World (CLAWAR 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1115))

Included in the following conference series:

  • 185 Accesses

Abstract

The development of legged robots capable of operating in unstructured environments continues to present a significant challenge to this day. The jumping ability commonly found in terrestrial-legged animals could offer a potential solution for solving this problem to some extent. Over the years, numerous designs based on rigid robotics, bio-inspired or not, have sought to emulate this capability. However, it is clear that there is a need for innovative actuators that facilitate more natural and adaptable movements that allow legged robots to traverse uneven terrain more effectively. Soft robotics could offer several advantages for improving the jumping capabilities of robots due to the ability to deform and reshape their limbs. In this regard, this paper proposes an approach that uses additive manufacturing of thermoplastic elastomers (TPE) for a soft jumping quadruped robot based on bicameral pneumatic actuators with the ability to move rapidly and continuously jumping at a maximum speed of 116.7 mm/s, as well as with the ability to rotate and adapt to unstructured environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, C., Zou, W., Ma, L., Wang, Z.: Biologically inspired jumping robots: a comprehensive review. Robot. Auton. Syst. 124, 103362 (2020). https://doi.org/10.1016/j.robot.2019.103362

    Article  MATH  Google Scholar 

  2. Klemm, V., et al.: Ascento: a two-wheeled jumping robot. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7515–7521. IEEE (2019). https://doi.org/10.1109/ICRA.2019.8793792

  3. Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Rob. 1(1), eaag2048 (2016). https://doi.org/10.1126/scirobotics.aag2048

    Article  Google Scholar 

  4. Haldane, D.W., Yim, J.K., Fearing, R.S.: Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3345–3351. IEEE (2017).https://doi.org/10.1109/IROS.2017.8206172

  5. Gans, C., Parsons, T.S.: On the origin of the jumping mechanism in frogs. Evolution 92–99 (1966). https://doi.org/10.2307/2406151

  6. Tang, Y., Qin, L., Li, X., Chew, C.M., Zhu, J.: A frog-inspired swimming robot based on dielectric elastomer actuators. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2403–2408. IEEE (2017). https://doi.org/10.1109/IROS.2017.8206054

  7. Fan, J., Wang, S., Yu, Q., Zhu, Y.: Swimming performance of the frog-inspired soft robot. Soft Rob. 7(5), 615–626 (2020). https://doi.org/10.1089/soro.2019.0094

    Article  MATH  Google Scholar 

  8. Pandey, J., Reddy, N. S., Ray, R., Shome, S.N.: Biological swimming mechanism analysis and design of robotic frog. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 1726–1731. IEEE (2013). https://doi.org/10.1109/ICMA.2013.6618176

  9. Fan, J., Du, Q., Dong, Z., Zhao, J., Xu, T.: Design of the jump mechanism for a biomimetic robotic frog. Biomimetics 7(4), 142 (2022). https://doi.org/10.3390/biomimetics7040142

    Article  MATH  Google Scholar 

  10. Zhong, J., Luo, M., Liu, X., Fan, J., Zhao, J.: Frog-inspired jumping robot actuated by pneumatic muscle actuators. Adv. Mech. Eng. 10(6), 1687814018782303 (2018). https://doi.org/10.1177/1687814018782303

    Article  MATH  Google Scholar 

  11. Wang, M., Zang, X.Z., Zhao, J.: An extraction method of frog jumping trajectory for biomimetic robot design. J. Beijing Univ. Posts Telecommun. 31(4), 37 (2008). https://doi.org/10.13190/jbupt.200804.37.wangm

    Article  MATH  Google Scholar 

  12. Ahn, J., Park, J., Kim, K.S., Kim, S.: Frog-inspired jumping robot for overcoming high obstacles. In: IEEE ISR 2013, pp. 1–4. IEEE (2013). https://doi.org/10.1109/ISR.2013.6695739

  13. Wang, S., Fan, J., Liu, Y.: Simulation analysis of frog-inspired take-off performance based on different structural models. Biomimetics 9(3), 168 (2024). https://doi.org/10.3390/biomimetics9030168

    Article  MATH  Google Scholar 

  14. Tolley, M.T., et al.: An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 561–566. IEEE (2014). https://doi.org/10.1109/IROS.2014.6942615

  15. Tsai, S., Wang, Q., Wang, Y., King, W.P., Tawfick, S.: Miniature soft jumping robots made by additive manufacturing. Smart Mater. Struct. 32(10), 105022 (2023). https://doi.org/10.1088/1361-665X/acf41e

    Article  Google Scholar 

  16. Loepfe, M., Schumacher, C.M., Lustenberger, U.B., Stark, W.J.: An untethered, jumping roly-poly soft robot driven by combustion. Soft Rob. 2(1), 33–41 (2015). https://doi.org/10.1089/soro.2014.0021

    Article  Google Scholar 

  17. Chen, R., et al.: Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 12(1), 7028 (2021). https://doi.org/10.1038/s41467-021-27265-w

    Article  MATH  Google Scholar 

  18. Jeon, G.H., Park, Y.J.: Soft jumping robot using soft morphing and the yield point of magnetic force. Appl. Sci. 11(13), 5891 (2021). https://doi.org/10.3390/app11135891

    Article  MATH  Google Scholar 

  19. Chen, R., Zhu, X., Yuan, Z., Pu, H., Luo, J., Sun, Y.: A bioinspired single actuator-driven soft robot capable of multi-strategy locomotion. IEEE Trans. Rob. (2024). https://doi.org/10.1109/TRO.2024.3370050

  20. Ahn, C., Liang, X., Cai, S.: Bioinspired design of light‐powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater. Technol. 4(7), 1900185 (2019). https://doi.org/10.1002/admt.201900185

  21. Park, W., Seo, S., Bae, J.: A hybrid gripper with soft material and rigid structures. IEEE Rob. Autom. Lett. 4(1), 65–72 (2018). https://doi.org/10.1109/LRA.2018.2878972

    Article  MATH  Google Scholar 

  22. Navas, E., Fernández, R., Armada, M., Gonzalez-de-Santos, P.: Diaphragm-type pneumatic-driven soft grippers for precision harvesting. Agronomy 11(9), 1727 (2021). https://doi.org/10.3390/agronomy11091727

  23. Gerez, L., Chang, C.M., Liarokapis, M.: A hybrid, encompassing, three-fingered robotic gripper combining pneumatic telescopic mechanisms and rigid claws. In: 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 142–147. IEEE (2020). https://doi.org/10.1109/SSRR50563.2020.9292622

  24. Zhu, W., et al.: A soft-rigid hybrid gripper with lateral compliance and dexterous in-hand manipulation. IEEE/ASME Trans. Mechatron. 28(1), 104–115 (2022). https://doi.org/10.1109/TMECH.2022.3195985

    Article  MATH  Google Scholar 

  25. Keong, B.A.W., Hua, R.Y.C.: A novel fold‐based design approach toward printable soft robotics using flexible 3D printing materials. Adv. Mater. Technol. 3(2), 1700172 (2018). https://doi.org/10.1002/admt.201700172

Download references

Acknowledgment

The research leading to these results was supported in part by: (i) the Grant PID2020-116270RB-I00 funded by MCIN/AEI/10.13039/501100011033; (ii) the Grant PDC2021-121578-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”; (iii) the Grant TED2021-132710B-I00 funded by MCIN/AEI/10.13039/50110 0011033 and by the “European Union NextGenerationEU/PRTR”; and (iv) CSIC under Grant 202350E072, Proyecto Intramural IAMC-ROBI-II (Inteligencia Artificial y Mecatrónica Cognitiva para la Manipulación Robótica Bimanual - 2\(^\circ \) Fase).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Navas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navas, E., Blanco, K., Rodríguez-Nieto, D., Fernández, R. (2024). An Approach to Soft Jumping Robots. In: Berns, K., Tokhi, M.O., Roennau, A., Silva, M.F., Dillmann, R. (eds) Walking Robots into Real World. CLAWAR 2024. Lecture Notes in Networks and Systems, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-031-71301-9_8

Download citation

Publish with us

Policies and ethics