Abstract
The development of legged robots capable of operating in unstructured environments continues to present a significant challenge to this day. The jumping ability commonly found in terrestrial-legged animals could offer a potential solution for solving this problem to some extent. Over the years, numerous designs based on rigid robotics, bio-inspired or not, have sought to emulate this capability. However, it is clear that there is a need for innovative actuators that facilitate more natural and adaptable movements that allow legged robots to traverse uneven terrain more effectively. Soft robotics could offer several advantages for improving the jumping capabilities of robots due to the ability to deform and reshape their limbs. In this regard, this paper proposes an approach that uses additive manufacturing of thermoplastic elastomers (TPE) for a soft jumping quadruped robot based on bicameral pneumatic actuators with the ability to move rapidly and continuously jumping at a maximum speed of 116.7 mm/s, as well as with the ability to rotate and adapt to unstructured environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Zhang, C., Zou, W., Ma, L., Wang, Z.: Biologically inspired jumping robots: a comprehensive review. Robot. Auton. Syst. 124, 103362 (2020). https://doi.org/10.1016/j.robot.2019.103362
Klemm, V., et al.: Ascento: a two-wheeled jumping robot. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7515–7521. IEEE (2019). https://doi.org/10.1109/ICRA.2019.8793792
Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Rob. 1(1), eaag2048 (2016). https://doi.org/10.1126/scirobotics.aag2048
Haldane, D.W., Yim, J.K., Fearing, R.S.: Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3345–3351. IEEE (2017).https://doi.org/10.1109/IROS.2017.8206172
Gans, C., Parsons, T.S.: On the origin of the jumping mechanism in frogs. Evolution 92–99 (1966). https://doi.org/10.2307/2406151
Tang, Y., Qin, L., Li, X., Chew, C.M., Zhu, J.: A frog-inspired swimming robot based on dielectric elastomer actuators. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2403–2408. IEEE (2017). https://doi.org/10.1109/IROS.2017.8206054
Fan, J., Wang, S., Yu, Q., Zhu, Y.: Swimming performance of the frog-inspired soft robot. Soft Rob. 7(5), 615–626 (2020). https://doi.org/10.1089/soro.2019.0094
Pandey, J., Reddy, N. S., Ray, R., Shome, S.N.: Biological swimming mechanism analysis and design of robotic frog. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 1726–1731. IEEE (2013). https://doi.org/10.1109/ICMA.2013.6618176
Fan, J., Du, Q., Dong, Z., Zhao, J., Xu, T.: Design of the jump mechanism for a biomimetic robotic frog. Biomimetics 7(4), 142 (2022). https://doi.org/10.3390/biomimetics7040142
Zhong, J., Luo, M., Liu, X., Fan, J., Zhao, J.: Frog-inspired jumping robot actuated by pneumatic muscle actuators. Adv. Mech. Eng. 10(6), 1687814018782303 (2018). https://doi.org/10.1177/1687814018782303
Wang, M., Zang, X.Z., Zhao, J.: An extraction method of frog jumping trajectory for biomimetic robot design. J. Beijing Univ. Posts Telecommun. 31(4), 37 (2008). https://doi.org/10.13190/jbupt.200804.37.wangm
Ahn, J., Park, J., Kim, K.S., Kim, S.: Frog-inspired jumping robot for overcoming high obstacles. In: IEEE ISR 2013, pp. 1–4. IEEE (2013). https://doi.org/10.1109/ISR.2013.6695739
Wang, S., Fan, J., Liu, Y.: Simulation analysis of frog-inspired take-off performance based on different structural models. Biomimetics 9(3), 168 (2024). https://doi.org/10.3390/biomimetics9030168
Tolley, M.T., et al.: An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 561–566. IEEE (2014). https://doi.org/10.1109/IROS.2014.6942615
Tsai, S., Wang, Q., Wang, Y., King, W.P., Tawfick, S.: Miniature soft jumping robots made by additive manufacturing. Smart Mater. Struct. 32(10), 105022 (2023). https://doi.org/10.1088/1361-665X/acf41e
Loepfe, M., Schumacher, C.M., Lustenberger, U.B., Stark, W.J.: An untethered, jumping roly-poly soft robot driven by combustion. Soft Rob. 2(1), 33–41 (2015). https://doi.org/10.1089/soro.2014.0021
Chen, R., et al.: Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 12(1), 7028 (2021). https://doi.org/10.1038/s41467-021-27265-w
Jeon, G.H., Park, Y.J.: Soft jumping robot using soft morphing and the yield point of magnetic force. Appl. Sci. 11(13), 5891 (2021). https://doi.org/10.3390/app11135891
Chen, R., Zhu, X., Yuan, Z., Pu, H., Luo, J., Sun, Y.: A bioinspired single actuator-driven soft robot capable of multi-strategy locomotion. IEEE Trans. Rob. (2024). https://doi.org/10.1109/TRO.2024.3370050
Ahn, C., Liang, X., Cai, S.: Bioinspired design of light‐powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater. Technol. 4(7), 1900185 (2019). https://doi.org/10.1002/admt.201900185
Park, W., Seo, S., Bae, J.: A hybrid gripper with soft material and rigid structures. IEEE Rob. Autom. Lett. 4(1), 65–72 (2018). https://doi.org/10.1109/LRA.2018.2878972
Navas, E., Fernández, R., Armada, M., Gonzalez-de-Santos, P.: Diaphragm-type pneumatic-driven soft grippers for precision harvesting. Agronomy 11(9), 1727 (2021). https://doi.org/10.3390/agronomy11091727
Gerez, L., Chang, C.M., Liarokapis, M.: A hybrid, encompassing, three-fingered robotic gripper combining pneumatic telescopic mechanisms and rigid claws. In: 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 142–147. IEEE (2020). https://doi.org/10.1109/SSRR50563.2020.9292622
Zhu, W., et al.: A soft-rigid hybrid gripper with lateral compliance and dexterous in-hand manipulation. IEEE/ASME Trans. Mechatron. 28(1), 104–115 (2022). https://doi.org/10.1109/TMECH.2022.3195985
Keong, B.A.W., Hua, R.Y.C.: A novel fold‐based design approach toward printable soft robotics using flexible 3D printing materials. Adv. Mater. Technol. 3(2), 1700172 (2018). https://doi.org/10.1002/admt.201700172
Acknowledgment
The research leading to these results was supported in part by: (i) the Grant PID2020-116270RB-I00 funded by MCIN/AEI/10.13039/501100011033; (ii) the Grant PDC2021-121578-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”; (iii) the Grant TED2021-132710B-I00 funded by MCIN/AEI/10.13039/50110 0011033 and by the “European Union NextGenerationEU/PRTR”; and (iv) CSIC under Grant 202350E072, Proyecto Intramural IAMC-ROBI-II (Inteligencia Artificial y Mecatrónica Cognitiva para la Manipulación Robótica Bimanual - 2\(^\circ \) Fase).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Navas, E., Blanco, K., Rodríguez-Nieto, D., Fernández, R. (2024). An Approach to Soft Jumping Robots. In: Berns, K., Tokhi, M.O., Roennau, A., Silva, M.F., Dillmann, R. (eds) Walking Robots into Real World. CLAWAR 2024. Lecture Notes in Networks and Systems, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-031-71301-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-71301-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71300-2
Online ISBN: 978-3-031-71301-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)