Skip to main content

Business, Data and Analytics: Specifying AI Use Cases with the Help of Modeling Techniques

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2024)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 529))

Included in the following conference series:

  • 263 Accesses

Abstract

While artificial intelligence promises a wide range of potential for businesses, its adoption poses major problems for some organizations. This paper presents a modeling framework that aims to specify AI use cases. It models three views: Business, data and analytics, that are adopted for the requirements of AI. The framework was applied in a real-world case study leading to several AI use cases and two proof of concepts. While the business view is a useful tool to derive ideas for AI use cases in general, the data and analytics views are very specific to each use case. The framework serves as a means to an end to communicate the project goals, deliver practical guidance and to capture the main results. As its application is time consuming and challenging, this paper closes with guidelines for its efficient use in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benbya, H., Davenport, T.H., Pachidi, S.: Artificial intelligence in organizations: current state and future opportunities. MIS Q. Exec. (2020). https://doi.org/10.2139/ssrn.3741983

    Article  Google Scholar 

  2. Enholm, I.M., Papagiannidis, E., Mikalef, P., Krogstie, J.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. (2022). https://doi.org/10.1007/s10796-021-10186-w

    Article  Google Scholar 

  3. Engel, C., Ebel, P., van Giffen, B.: Empirically exploring the cause-effect relationships of AI characteristics, project management challenges, and organizational change. In: Ahlemann, F., Schütte, R., Stieglitz, S. (eds.) Innovation Through Information Systems. WI 2021. Lecture Notes in Information Systems and Organisation, vol. 47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86797-3_12

  4. Howard, C., Rowsell-Jones, A.: 2019 CIO Survey: CIOs Have Awoken to the Importance of AI. Gartner (2019)

    Google Scholar 

  5. Ransbotham, S., Khodabandeh, S., Fehling, R., LaFountain, B., Kiron, D.: Winning with AI. MIT Sloan Management Review and Boston Consulting Group (2019)

    Google Scholar 

  6. Westenberger, J., Schuler, K., Schlegel, D.: Failure of AI projects: understanding the critical factors. Procedia Comput. Sci. (2022). https://doi.org/10.1016/j.procs.2021.11.074

    Article  Google Scholar 

  7. Davenport, T.H., Ronanki, R.: Artificial intelligence for the real world. Don’t start with moon shots. Harvard Bus. Rev. 96, 108–116 (2018)

    Google Scholar 

  8. Collins, C., Dennehy, D., Conboy, K., Mikalef, P.: Artificial intelligence in information systems research: a systematic literature review and research agenda. Int. J. Inf. Manage. 60, 102383 (2021). https://doi.org/10.1016/j.ijinfomgt.2021.102383

    Article  Google Scholar 

  9. Mayer, A.-S., Strich, F., Fiedler, M.: Unintended consequences of introducing AI systems for decision making. MIS Q. Exec. 19, 239–257 (2020). https://doi.org/10.17705/2msqe.00036

    Article  Google Scholar 

  10. Andrews, W.: Build the AI business case. A CIO’s guide to building the strategy and business case to implement AI in the enterprise. Gartner (2018)

    Google Scholar 

  11. Zhang, Z., Nandhakumar, J., Hummel, J.T., Waardenburg, L.: Addressing the key challenges of developing machine learning AI systems for knowledge-intensive work. MIS Q. Exec. 19, 221–238 (2020). https://doi.org/10.17705/2msqe.00035

    Article  Google Scholar 

  12. Uba, C., Lewandowski, T., Böhmann, T.: The AI-based transformation of organizations: the 3D-model for guiding enterprise-wide AI change. In: 56th Hawaii International Conference on System Sciences (2023). 102456

    Google Scholar 

  13. Maass, W., Storey, V.C.: Pairing conceptual modeling with machine learning. Data Knowl. Eng. 134, 101909 (2021). https://doi.org/10.1016/j.datak.2021.101909

    Article  Google Scholar 

  14. Martinez-Plumed, F., et al.: CRISP-DM twenty years later: from data mining processes to data science trajectories. IEEE Trans. Knowl. Data Eng. 33, 3048–3061 (2019). https://doi.org/10.1109/TKDE.2019.2962680

    Article  Google Scholar 

  15. Brethenoux, E., Karamouzis, F.: 5 Steps to Practically Implement AI Techniques. Gartner (2019). https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/383797-5-steps-to-practically-implement-ai-techniques.pdf. Accessed 23 Feb 2022

  16. Borges, A.F., Laurindo, F.J., Spínola, M.M., Gonçalves, R.F., Mattos, C.A.: The strategic use of artificial intelligence in the digital era: systematic literature review and future research directions. Int. J. Inf. Manage. 57, 102225 (2021). https://doi.org/10.1016/j.ijinfomgt.2020.102225

    Article  Google Scholar 

  17. Davenport, T.H., Seseri, R.: What Is a Minimum Viable AI Product? MIT Sloan Management Review (2020)

    Google Scholar 

  18. Engel, C., Elshan, E., Ebel, P.: Deploying a model for assessing cognitive automation use cases: Insights from action research with a leading European manufacturing company. In: 54th Hawaii International Conference on System Sciences, pp. 6253–6262 (2021)

    Google Scholar 

  19. Haresamudram, K., Larsson, S., Heintz, F.: Three levels of AI transparency. Computer 56, 93–100 (2023). https://doi.org/10.1109/MC.2022.3213181

    Article  Google Scholar 

  20. Felzmann, H., Villaronga, E.F., Lutz, C., Tamò-Larrieux, A.: Transparency you can trust: transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data Soc. 6, 2053951719860542 (2019). https://doi.org/10.1177/2053951719860542

    Article  Google Scholar 

  21. Salwei, M.E., Carayon, P.: A sociotechnical systems framework for the application of artificial intelligence in health care delivery. J. Cogn. Eng. Decis. Making 16, 194–206 (2022). https://doi.org/10.1177/15553434221097357

    Article  Google Scholar 

  22. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating goal models within the goal-oriented requirement language. Int. J. Intell. Syst. 25, 841–877 (2010). https://doi.org/10.1002/int.20433

    Article  Google Scholar 

  23. Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic models for business intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 429–439. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24606-7_33

    Chapter  Google Scholar 

  24. Nalchigar, S., Eric, Yu., Ramani, R.: A conceptual modeling framework for business analytics. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_3

    Chapter  Google Scholar 

  25. Nalchigar, S., Yu, E.: Business-driven data analytics: a conceptual modeling framework. Data Knowl. Eng. 117, 359–372 (2018). https://doi.org/10.1016/j.datak.2018.04.006

    Article  Google Scholar 

  26. Brunnbauer, M., Piller, G., Rothlauf, F.: Top-down or explorative? A case study on the identification of AI use cases. In: PACIS 2022 Proceedings (2022)

    Google Scholar 

  27. Brunnbauer, M., Piller, G., Rothlauf, F.: idea-AI: developing a method for the systematic identification of AI use cases. In: AMCIS 2021 Proceedings (2021)

    Google Scholar 

  28. Studer, S., et al.: Towards CRISP-ML(Q): a machine learning process model with quality assurance methodology. Mach. Learn. Knowl. Extr. 3, 392–413 (2021). https://doi.org/10.3390/make3020020

    Article  Google Scholar 

  29. Hofmann, P., Jöhnk, J., Protschky, D., Urbach, N.: Developing purposeful AI use cases - a structured method and its application in project management. In: 15th International Conference on Wirtschaftsinformatik (WI) (2020)

    Google Scholar 

  30. Barone, D., Topaloglou, T., Mylopoulos, J.: Business Intelligence Modeling in Action: A Hospital Case Study. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 502–517. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_33

    Chapter  Google Scholar 

  31. Barone, D., Eric, Yu., Won, J., Jiang, L., Mylopoulos, J.: Enterprise Modeling for Business Intelligence. In: Bommel, P., Hoppenbrouwers, S., Overbeek, S., Proper, E., Barjis, J. (eds.) PoEM 2010. LNBIP, vol. 68, pp. 31–45. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16782-9_3

    Chapter  Google Scholar 

  32. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stan. Interfaces 34, 124–134 (2012). https://doi.org/10.1016/j.csi.2011.06.002

    Article  Google Scholar 

  33. Hehn, J., Mendez, D., Übernickel, F., Brenner, W., Broy, M.: On integrating design thinking for human-centered requirements engineering. IEEE Softw. 37, 25–31 (2020). https://doi.org/10.1109/MS.2019.2957680

    Article  Google Scholar 

  34. Micheli, P., Wilner, S.J.S., Bhatti, S.H., Mura, M., Beverland, M.B.: Doing design thinking: conceptual review, synthesis, and research agenda. J. Prod. Innov. Manag. 36, 124–148 (2019). https://doi.org/10.1111/jpim.12466

    Article  Google Scholar 

  35. Thoring, K., Müller, R.M.: Understanding design thinking: a process model based on method engineering. In: 13th International Conference on Engineering and Product Design Education, pp. 493–498 (2011)

    Google Scholar 

  36. Temkin, B.D.: Mapping the customer journey. Forrester Res. 3, 20 (2010)

    Google Scholar 

  37. Ludwiczak, A.: Using customer journey mapping to improve public services: a critical analysis of the literature. Management 25, 22–35 (2021). https://doi.org/10.2478/manment-2019-0071

    Article  Google Scholar 

  38. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12, 5–33 (1996). https://doi.org/10.1080/07421222.1996.11518099

    Article  Google Scholar 

  39. Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes in data warehouses. In: Song, I.Y., Liddle, S.W., Ling, T.W., Scheuermann, P. (eds.) Conceptual Modeling - ER 2003, 2813th edn., pp. 307–320. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  40. Mukhamediev, R.I., et al.: Review of artificial intelligence and machine learning technologies: classification, restrictions opportunities and challenges. Mathematics 10, 2552 (2022). https://doi.org/10.3390/math10152552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Brunnbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brunnbauer, M. (2024). Business, Data and Analytics: Specifying AI Use Cases with the Help of Modeling Techniques. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71333-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71332-3

  • Online ISBN: 978-3-031-71333-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics