Abstract
While artificial intelligence promises a wide range of potential for businesses, its adoption poses major problems for some organizations. This paper presents a modeling framework that aims to specify AI use cases. It models three views: Business, data and analytics, that are adopted for the requirements of AI. The framework was applied in a real-world case study leading to several AI use cases and two proof of concepts. While the business view is a useful tool to derive ideas for AI use cases in general, the data and analytics views are very specific to each use case. The framework serves as a means to an end to communicate the project goals, deliver practical guidance and to capture the main results. As its application is time consuming and challenging, this paper closes with guidelines for its efficient use in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benbya, H., Davenport, T.H., Pachidi, S.: Artificial intelligence in organizations: current state and future opportunities. MIS Q. Exec. (2020). https://doi.org/10.2139/ssrn.3741983
Enholm, I.M., Papagiannidis, E., Mikalef, P., Krogstie, J.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. (2022). https://doi.org/10.1007/s10796-021-10186-w
Engel, C., Ebel, P., van Giffen, B.: Empirically exploring the cause-effect relationships of AI characteristics, project management challenges, and organizational change. In: Ahlemann, F., Schütte, R., Stieglitz, S. (eds.) Innovation Through Information Systems. WI 2021. Lecture Notes in Information Systems and Organisation, vol. 47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86797-3_12
Howard, C., Rowsell-Jones, A.: 2019 CIO Survey: CIOs Have Awoken to the Importance of AI. Gartner (2019)
Ransbotham, S., Khodabandeh, S., Fehling, R., LaFountain, B., Kiron, D.: Winning with AI. MIT Sloan Management Review and Boston Consulting Group (2019)
Westenberger, J., Schuler, K., Schlegel, D.: Failure of AI projects: understanding the critical factors. Procedia Comput. Sci. (2022). https://doi.org/10.1016/j.procs.2021.11.074
Davenport, T.H., Ronanki, R.: Artificial intelligence for the real world. Don’t start with moon shots. Harvard Bus. Rev. 96, 108–116 (2018)
Collins, C., Dennehy, D., Conboy, K., Mikalef, P.: Artificial intelligence in information systems research: a systematic literature review and research agenda. Int. J. Inf. Manage. 60, 102383 (2021). https://doi.org/10.1016/j.ijinfomgt.2021.102383
Mayer, A.-S., Strich, F., Fiedler, M.: Unintended consequences of introducing AI systems for decision making. MIS Q. Exec. 19, 239–257 (2020). https://doi.org/10.17705/2msqe.00036
Andrews, W.: Build the AI business case. A CIO’s guide to building the strategy and business case to implement AI in the enterprise. Gartner (2018)
Zhang, Z., Nandhakumar, J., Hummel, J.T., Waardenburg, L.: Addressing the key challenges of developing machine learning AI systems for knowledge-intensive work. MIS Q. Exec. 19, 221–238 (2020). https://doi.org/10.17705/2msqe.00035
Uba, C., Lewandowski, T., Böhmann, T.: The AI-based transformation of organizations: the 3D-model for guiding enterprise-wide AI change. In: 56th Hawaii International Conference on System Sciences (2023). 102456
Maass, W., Storey, V.C.: Pairing conceptual modeling with machine learning. Data Knowl. Eng. 134, 101909 (2021). https://doi.org/10.1016/j.datak.2021.101909
Martinez-Plumed, F., et al.: CRISP-DM twenty years later: from data mining processes to data science trajectories. IEEE Trans. Knowl. Data Eng. 33, 3048–3061 (2019). https://doi.org/10.1109/TKDE.2019.2962680
Brethenoux, E., Karamouzis, F.: 5 Steps to Practically Implement AI Techniques. Gartner (2019). https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/383797-5-steps-to-practically-implement-ai-techniques.pdf. Accessed 23 Feb 2022
Borges, A.F., Laurindo, F.J., Spínola, M.M., Gonçalves, R.F., Mattos, C.A.: The strategic use of artificial intelligence in the digital era: systematic literature review and future research directions. Int. J. Inf. Manage. 57, 102225 (2021). https://doi.org/10.1016/j.ijinfomgt.2020.102225
Davenport, T.H., Seseri, R.: What Is a Minimum Viable AI Product? MIT Sloan Management Review (2020)
Engel, C., Elshan, E., Ebel, P.: Deploying a model for assessing cognitive automation use cases: Insights from action research with a leading European manufacturing company. In: 54th Hawaii International Conference on System Sciences, pp. 6253–6262 (2021)
Haresamudram, K., Larsson, S., Heintz, F.: Three levels of AI transparency. Computer 56, 93–100 (2023). https://doi.org/10.1109/MC.2022.3213181
Felzmann, H., Villaronga, E.F., Lutz, C., Tamò-Larrieux, A.: Transparency you can trust: transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data Soc. 6, 2053951719860542 (2019). https://doi.org/10.1177/2053951719860542
Salwei, M.E., Carayon, P.: A sociotechnical systems framework for the application of artificial intelligence in health care delivery. J. Cogn. Eng. Decis. Making 16, 194–206 (2022). https://doi.org/10.1177/15553434221097357
Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating goal models within the goal-oriented requirement language. Int. J. Intell. Syst. 25, 841–877 (2010). https://doi.org/10.1002/int.20433
Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic models for business intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 429–439. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24606-7_33
Nalchigar, S., Eric, Yu., Ramani, R.: A conceptual modeling framework for business analytics. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_3
Nalchigar, S., Yu, E.: Business-driven data analytics: a conceptual modeling framework. Data Knowl. Eng. 117, 359–372 (2018). https://doi.org/10.1016/j.datak.2018.04.006
Brunnbauer, M., Piller, G., Rothlauf, F.: Top-down or explorative? A case study on the identification of AI use cases. In: PACIS 2022 Proceedings (2022)
Brunnbauer, M., Piller, G., Rothlauf, F.: idea-AI: developing a method for the systematic identification of AI use cases. In: AMCIS 2021 Proceedings (2021)
Studer, S., et al.: Towards CRISP-ML(Q): a machine learning process model with quality assurance methodology. Mach. Learn. Knowl. Extr. 3, 392–413 (2021). https://doi.org/10.3390/make3020020
Hofmann, P., Jöhnk, J., Protschky, D., Urbach, N.: Developing purposeful AI use cases - a structured method and its application in project management. In: 15th International Conference on Wirtschaftsinformatik (WI) (2020)
Barone, D., Topaloglou, T., Mylopoulos, J.: Business Intelligence Modeling in Action: A Hospital Case Study. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 502–517. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_33
Barone, D., Eric, Yu., Won, J., Jiang, L., Mylopoulos, J.: Enterprise Modeling for Business Intelligence. In: Bommel, P., Hoppenbrouwers, S., Overbeek, S., Proper, E., Barjis, J. (eds.) PoEM 2010. LNBIP, vol. 68, pp. 31–45. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16782-9_3
Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stan. Interfaces 34, 124–134 (2012). https://doi.org/10.1016/j.csi.2011.06.002
Hehn, J., Mendez, D., Übernickel, F., Brenner, W., Broy, M.: On integrating design thinking for human-centered requirements engineering. IEEE Softw. 37, 25–31 (2020). https://doi.org/10.1109/MS.2019.2957680
Micheli, P., Wilner, S.J.S., Bhatti, S.H., Mura, M., Beverland, M.B.: Doing design thinking: conceptual review, synthesis, and research agenda. J. Prod. Innov. Manag. 36, 124–148 (2019). https://doi.org/10.1111/jpim.12466
Thoring, K., Müller, R.M.: Understanding design thinking: a process model based on method engineering. In: 13th International Conference on Engineering and Product Design Education, pp. 493–498 (2011)
Temkin, B.D.: Mapping the customer journey. Forrester Res. 3, 20 (2010)
Ludwiczak, A.: Using customer journey mapping to improve public services: a critical analysis of the literature. Management 25, 22–35 (2021). https://doi.org/10.2478/manment-2019-0071
Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12, 5–33 (1996). https://doi.org/10.1080/07421222.1996.11518099
Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes in data warehouses. In: Song, I.Y., Liddle, S.W., Ling, T.W., Scheuermann, P. (eds.) Conceptual Modeling - ER 2003, 2813th edn., pp. 307–320. Springer, Berlin, Heidelberg (2003)
Mukhamediev, R.I., et al.: Review of artificial intelligence and machine learning technologies: classification, restrictions opportunities and challenges. Mathematics 10, 2552 (2022). https://doi.org/10.3390/math10152552
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brunnbauer, M. (2024). Business, Data and Analytics: Specifying AI Use Cases with the Help of Modeling Techniques. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-71333-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71332-3
Online ISBN: 978-3-031-71333-0
eBook Packages: Computer ScienceComputer Science (R0)