Skip to main content

Technical Debt – Insights Into a Manufacturing SME Case Study

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2024)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 529))

Included in the following conference series:

  • 280 Accesses

Abstract

Due to data and its use being an upcoming source of value for all industries, the use of IT systems becomes increasingly important to the daily business of most companies. As digitalization efforts increase, some existing obstacles come into focus – such as technical debt (TD). TD is well-researched in the software industry, but not so much in other industries. This paper aims at answering the question of how clients of software vendors in other industries are confronted with TD by performing a case study in a manufacturing SME and using grounded theory to develop a theory model on how TD occurs on the client-side, considering the entire system landscape and its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shang, Z., Zhang, L.: The sustainable digitalization in the manufacturing industry: a bibliometric analysis and research trend. Mobile Inf. Syst. 2022, 1451705, 1–11 (2022). https://doi.org/10.1155/2022/1451705

  2. Demary, V., Fritsch, M., Goecke, H., et al.: Readiness Data Economy. Cologne Institute for Economic Research (2019)

    Google Scholar 

  3. Frey, F.J., Hentrich, C., Zdun, U.: Capability-based service identification in service-oriented legacy modernization. In: Kohls, C. (ed.) Proceedings of the 18th European Conference on Pattern Languages of Program (EuroPLoP 2013), pp. 1–12. ACM, New York (2015). https://doi.org/10.1145/2739011.2739021

  4. Kraus, P., Baumöl, U.: Erfahrungen im IT-Management für einen gewachsenen Mittelständler. Controlling 28(12), 728–734 (2016). https://doi.org/10.15358/0935-0381-2016-12-728

    Article  Google Scholar 

  5. Brodny, J., Tutak, M.: Digitalization of small and medium-sized enterprises and economic growth: evidence for the EU-27 countries. J. Open Innov.: Technol. Market Complex. 8(2), 67, 1–31 (2022). https://doi.org/10.3390/joitmc8020067

  6. Dalal, V., Krishnakanthan, K., Münstermann, B., et al.: Tech Debt: Reclaiming Tech Equity. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity/. Accessed 23 Mar 2024

  7. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. J. Syst. Softw. 86(6), 1498–1516 (2013). https://doi.org/10.1016/j.jss.2012.12.052

    Article  Google Scholar 

  8. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its management. J. Syst. Softw. 101, 193–220 (2015). https://doi.org/10.1016/j.jss.2014.12.027

    Article  Google Scholar 

  9. Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., et al.: The financial aspect of managing technical debt: a systematic literature review. Inf. Softw. Technol. 64, 52–73 (2015). https://doi.org/10.1016/j.infsof.2015.04.001

    Article  Google Scholar 

  10. Alves, N.S., Mendes, T.S., de Mendonça, M.G., et al.: Identification and management of technical debt: a systematic mapping study. Inf. Softw. Technol. 70, 100–121 (2016). https://doi.org/10.1016/j.infsof.2015.10.008

    Article  Google Scholar 

  11. BenIdris, M., Ammar, H., Dzielski, D.: Investigate, identify and estimate the technical debt: a systematic mapping study. Int. J. Softw. Eng. Appl. 9(5), 1–14 (2018). https://doi.org/10.5121/ijsea.2018.9501

    Article  Google Scholar 

  12. Rios, N., de Mendonça Neto, M.G., Oliveira Spínola, R.: A tertiary study on technical debt: types, management strategies, research trends, and base information for practitioners. Inf. Softw. Technol. 102, 117–145 (2018). https://doi.org/10.1016/j.infsof.2018.05.010

  13. Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN OOPS Messenger 4(2), 29–30 (1993). https://doi.org/10.1145/157710.157715

    Article  Google Scholar 

  14. Seaman, C., Guo, Y., Zazworka, N., et al.: Using technical debt data in decision making: potential decision approaches. In: Third International Workshop on Managing Technical Debt, pp. 45–48. IEEE, Zurich (2012). https://doi.org/10.1109/MTD.2012.6225999

  15. Fowler, M.: Technical Debt Quadrant. https://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html. Accessed 23 Mar 2024

  16. McConnell, S.: Managing Technical Debt. http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%20Debt.pdf. Accessed 23 Mar 2024

  17. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice. IEEE Softw. 29(6), 18–21 (2012). https://doi.org/10.1109/MS.2012.167

    Article  Google Scholar 

  18. Stopford, B., Wallace, K., Allspaw, J.: Technical debt: challenges and perspectives. IEEE Softw. 34(4), 79–81 (2017). https://doi.org/10.1109/MS.2017.99

    Article  Google Scholar 

  19. Kitchenham, B.: Procedures for Performing Systematic Reviews. Technical Report, TR/SE-0401, pp. 1–26 (2004)

    Google Scholar 

  20. Beulen, E.: Implementing and contracting agile and DevOps: a survey in the Netherlands. In: Kotlarsky, J., Oshri, I., Willcocks, L. (eds.) Digital Services and Platforms. LNBIP, vol. 344, pp. 124–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-15850-7_7

    Chapter  Google Scholar 

  21. Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., et al.: The perception of technical debt in the embedded systems domain: an industrial case study. In: IEEE 8th International Workshop on Managing Technical Debt, pp. 9–16. IEEE, Piscataway (2016). https://doi.org/10.1109/MTD.2016.8

  22. Hayretci, H.E., Aydemir, F.B.: A multi case study on legacy system migration in the banking industry. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) Advanced Information Systems Engineering. LNCS, vol. 12751, pp. 536–550. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_32

    Chapter  Google Scholar 

  23. Block, L.: Managing software evolution in embedded automotive systems. In: Bargende, M., Reuss, H.-C., Wagner, A. (eds.) 20. Internationales Stuttgarter Symposium. PROCEE, pp. 557–571. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-30995-4_48

  24. Dong, Q.H., Ocker, F., Vogel-Heuser, B.: Technical debt as indicator for weaknesses in engineering of automated production systems. Prod. Eng. Res. Develop. 13(3–4), 273–282 (2019). https://doi.org/10.1007/s11740-019-00897-0

    Article  Google Scholar 

  25. Bi, F., Vogel-Heuser, B., Huang, Z., et al.: Characteristics, causes, and consequences of technical debt in the automation domain. J. Syst. Softw. 204, 111725 (2023). https://doi.org/10.1016/j.jss.2023.111725

  26. Vogel-Heuser, B., Bi, F.: Interdisciplinary effects of technical debt in companies with mechatronic products. J. Syst. Softw. 171, 110809 (2021). https://doi.org/10.1016/j.jss.2020.110809

  27. Ramasubbu, N., Kemerer, C.F.: Technical debt and the reliability of enterprise software systems: a competing risks analysis. Manage. Sci. 62(5), 1487–1510 (2016). https://doi.org/10.1287/mnsc.2015.2196

    Article  Google Scholar 

  28. Doğancı, Y., Özcan-Top, Ö., Koçyiğit, A.: Analyzing technical debt of a CRM application by categorizing ambiguous issue statements. In: Arabnia, H.R., Deligiannidis, L., Tinetti, F.G. et al. (eds.) Advances in Software Engineering, Education, and e-Learning. TRACOSCI, pp. 705–717. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70873-3_49

  29. Ionescu, T.B., Schlund, S., Schmidbauer, C.: Epistemic debt: a concept and measure of technical ignorance in smart manufacturing. In: Nunes, I.L. (ed.) Advances in Human Factors and Systems Interaction. AISC, vol. 959, pp. 81–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20040-4_8

    Chapter  Google Scholar 

  30. Dong, Q.H., Vogel-Heuser, B.: Cross-disciplinary and cross-life-cycle-phase technical debt in automated production systems. IFAC-PapersOnLine 51(11), 1192–1199 (2018). https://doi.org/10.1016/j.ifacol.2018.08.428

    Article  Google Scholar 

  31. Ivanov, I.I.: Chasing the crowd: digital transformations and the digital driven system design paradigm. In: Shishkov, B. (ed.) Business Modeling and Software Design. LNBIP, vol. 356, pp. 64–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_5

    Chapter  Google Scholar 

  32. Kanin, O., Drews, P.: Enterprise architecture management support for digital transformation projects in very large enterprises. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., et al. (eds.) Enterprise Design, Operations, and Computing. LNCS, vol. 13585, pp. 74–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_5

    Chapter  Google Scholar 

  33. Postolea, I.D., Bodea, C.-N.: Building resilience through digital transformation. In: Ciurea, C., Boja, C., Pocatilu, P., et al. (eds.) Education, Research and Business Technologies. SIST, vol. 276, pp. 371–381. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8866-9_31

    Chapter  Google Scholar 

  34. Sunyaev, A., Dehling, T., Strahringer, S., et al.: The future of enterprise information systems. Bus. Inf. Syst. Eng. 65(6), 731–751 (2023). https://doi.org/10.1007/s12599-023-00839-2

    Article  Google Scholar 

  35. Lampe, J.: Was Controller beim Einsatz von KI beachten müssen. Control. Manag. Rev. 65(2), 24–31 (2021). https://doi.org/10.1007/s12176-020-0360-7

    Article  Google Scholar 

  36. Ali, N., Baker, S., O’Crowley, R., et al.: Architecture consistency: state of the practice, challenges and requirements. Empir. Softw. Eng. 23(1), 224–258 (2018). https://doi.org/10.1007/s10664-017-9515-3

    Article  Google Scholar 

  37. Codabux, Z., Williams, B.: Managing technical debt: an industrial case study. In: Kruchten, P. (ed.) 4th International Workshop on Managing Technical Debt 2013, pp. 8–15. IEEE, Piscataway (2013). https://doi.org/10.1109/MTD.2013.6608672

    Chapter  Google Scholar 

  38. Kazman, R., Cai, Y., Mo, R., et al.: A case study in locating the architectural roots of technical debt. In: IEEE/ACM 37th International Conference on Software Engineering, vol. 2, pp. 179–188. IEEE, Piscataway (2015). https://doi.org/10.1109/ICSE.2015.146

  39. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt accumulation and refactoring over time. Inf. Softw. Technol. 67, 237–253 (2015). https://doi.org/10.1016/j.infsof.2015.07.005

    Article  Google Scholar 

  40. Soliman, M., Avgeriou, P., Li, Y.: Architectural design decisions that incur technical debt — an industrial case study. Information and Software Technology 139, 106669 (2021). https://doi.org/10.1016/j.infsof.2021.106669

  41. Recker, J.: Scientific research in information systems: a beginner’s guide. In: Progress in IS, 2nd edn. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85436-2

  42. Yin, R.K.: Case Study Research and Applications: Design and Methods, 6th edn. SAGE Publications, Los Angeles (2018)

    Google Scholar 

  43. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction, New Brunswick (1967). https://doi.org/10.4324/9780203793206

    Book  Google Scholar 

  44. Strauss, A., Corbin, J.: Grounded theory methodology: an overview. In: Denzin, N.K., Lincoln, Y.S. (eds.) Handbook of Qualitative Research, pp. 273–285. SAGE Publications, Thousand Oaks (1994)

    Google Scholar 

  45. Corbin, J., Strauss, A.: Grounded theory research: procedures, canons and evaluative criteria. Z. Soziol. 19(6), 418–427 (1990). https://doi.org/10.1515/zfsoz-1990-0602

    Article  Google Scholar 

  46. Coyne, I.T.: Sampling in qualitative research. Purposeful and theoretical sampling; merging or clear boundaries? J. Adv. Nurs. 26(3), 623–630 (1997). https://doi.org/10.1046/j.1365-2648.1997.t01-25-00999.x

  47. Fritz, M.S., Arthur, A.M.: Moderator variables. In: Braddick, O. (ed.) Oxford Research Encyclopedia of Psychology. Oxford University Press, Oxford (2017)

    Google Scholar 

  48. Siebra, C.A., Oliveira, R.G., Seaman, C.B., et al.: Theoretical conceptualization of TD: a practical perspective. J. Syst. Softw. 120, 219–237 (2016). https://doi.org/10.1016/j.jss.2016.05.043

    Article  Google Scholar 

  49. Behutiye, W.N., Rodríguez, P., Oivo, M., et al.: Analyzing the concept of technical debt in the context of agile software development: a systematic literature review. Inf. Softw. Technol. 82, 139–158 (2017). https://doi.org/10.1016/j.infsof.2016.10.004

    Article  Google Scholar 

  50. Verdecchia, R., Kruchten, P., Lago, P.: Architectural technical debt: a grounded theory. In: Jansen, A., Malavolta, I., Muccini, H., et al. (eds.) 4th European Conference on Software Architecture 2020. LNCS, vol. 12292, pp. 202–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58923-3_14

  51. Ramač, R., Mandić, V., Taušan, N., et al.: Prevalence, common causes and effects of technical debt. J. Syst. Softw. 184, 111114 (2022). https://doi.org/10.1016/j.jss.2021.111114

  52. Ramasubbu, N., Kemerer, C.F.: Controlling technical debt remediation in outsourced enterprise systems maintenance. J. Manag. Inf. Syst. 38(1), 4–28 (2021). https://doi.org/10.1080/07421222.2021.1870377

    Article  Google Scholar 

  53. Banker, R., Liang, Y., Ramasubbu, N.: Technical debt and firm performance. Manage. Sci. 67(5), 3174–3194 (2021). https://doi.org/10.1287/mnsc.2019.3542

    Article  Google Scholar 

Download references

Acknowledgments

We thank all supporters from the company and from OTH Amberg-Weiden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Möhring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greger, K., Möhring, M. (2024). Technical Debt – Insights Into a Manufacturing SME Case Study. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71333-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71332-3

  • Online ISBN: 978-3-031-71333-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics