Skip to main content

Towards Model-driven Enhancement of Safety in Healthcare Robot Interactions

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2024)

Abstract

In the continuously evolving landscape of healthcare technology, the evolution of robotics has revolutionized a wide spectrum of services. This situation created a variety of opportunities and challenges. One of the main challenges concerns the interaction of robots with human users and other robots, along with the safety aspect of such interactions. The current paper introduces a project aiming to tackle this challenge, initially via a literature review aiming to explore and structure the domain of robotic interactions in healthcare. Subsequently, the results are conceptualized in a domain meta-model, aiming to establish the foundation for an information system, based on a multi-view modeling approach, with the capabilities to support by documenting and facilitating safer interactions between healthcare robots and external agents. The current study focuses on the safety viewpoint of robotic interaction. The developed model is suitable for initiating the development of the abovementioned system that will use multi-view modeling principles. It is demonstrated in a use case derived from the associated ENDORSE EU project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pradhan, B., et al.: Internet of things and robotics in transforming current-day healthcare services. J. Healthc. Eng. 2021, 1–15 (2021). https://doi.org/10.1155/2021/9999504

    Article  Google Scholar 

  2. Lestingi, L., Askarpour, M., Bersani, M.M., Rossi, M.: Formal verification of human-robot interaction in healthcare scenarios. In: De Boer, F., Cerone, A. (eds.) Software Engineering and Formal Methods, pp. 303–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-642-24690-6

    Chapter  Google Scholar 

  3. Olaronke, I., Oluwaseun, O., Rhoda, I.: State of the art: a study of human-robot interaction in healthcare. IJIEEB. 9, 43–55 (2017). https://doi.org/10.5815/ijieeb.2017.03.06

    Article  Google Scholar 

  4. International Organization for Standardization (ISO): ISO 13482:2014(en), Robots and robotic devices — Safety requirements for personal care robots. https://www.iso.org/obp/ui/#iso:std:iso:13482:ed-1:v1:en

  5. International Organization for Standardization (ISO): ISO/TS 15066:2016(en), Robots and robotic devices — Collaborative robots

    Google Scholar 

  6. Haidegger, T., et al.: Industrial and medical cyber-physical systems: tackling user requirements and challenges in robotics. In: Kovács, L., Haidegger, T., Szakál, A. (eds.) Recent Advances in Intelligent Engineering, pp. 253–277. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-14350-3

    Chapter  Google Scholar 

  7. Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Factors 58, 525–532 (2016). https://doi.org/10.1177/0018720816644364

    Article  Google Scholar 

  8. Bork, D.: Using conceptual modeling for designing multi-view modeling tools. In: Presented at the Twenty-first Americas Conference on Information Systems. Puerto Rico (2015)

    Google Scholar 

  9. Sadeghnejad, S., Abadi, V.S.E., Jafari, B.: Rehabilitation robotics: History, applications, and recent advances. In: Medical and Healthcare Robotics, pp. 63–85. Elsevier (2023)

    Google Scholar 

  10. Vallès-Peris, N., Barat-Auleda, O., Domènech, M.: Robots in healthcare? what patients say. IJERPH. 18, 9933 (2021). https://doi.org/10.3390/ijerph18189933

    Article  Google Scholar 

  11. Corke, P.: Introduction. In: Robotics. Vision and Control, pp. 1–19. Springer, Cham (2023)

    Google Scholar 

  12. Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., Šabanović, S.: Human-Robot Interaction: An Introduction. Cambridge University Press (2020). https://doi.org/10.1017/9781108676649

    Book  Google Scholar 

  13. Taylor, R.H., Stoianovici, D.: Medical robotics in computer-integrated surgery. IEEE Trans. Robot. Automat. 19, 765–781 (2003). https://doi.org/10.1109/TRA.2003.817058

    Article  Google Scholar 

  14. Zhou, B., Yang, G., Shi, Z., Ma, S.: Natural language processing for smart healthcare. arXiv:2110.15803 (2021). https://doi.org/10.48550/ARXIV.2110.15803

  15. Mukherjee, D., Gupta, K., Chang, L.H., Najjaran, H.: A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot. Comput. Integr. Manuf. 73, 102231 (2022). https://doi.org/10.1016/j.rcim.2021.102231

    Article  Google Scholar 

  16. Braglia, G., Tagliavini, M., Pini, F., Biagiotti, L.: Online motion planning for safe human-robot cooperation using B-splines and hidden markov models. Robotics 12, 118 (2023)

    Article  Google Scholar 

  17. Sousa, S., Lamas, D., Dias, P.: A model for human-computer trust: contributions towards leveraging user engagement. In: Zaphiris, P., Ioannou, A. (eds.) Learning and Collaboration Technologies. Designing and Developing Novel Learning Experiences: First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, Part I, pp. 128–137. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-07482-5_13

    Chapter  Google Scholar 

  18. Gualtieri, L., Rauch, E., Vidoni, R.: Development and validation of guidelines for safety in human-robot collaborative assembly systems. Comput. Ind. Eng. 163, 107801 (2022). https://doi.org/10.1016/j.cie.2021.107801

    Article  Google Scholar 

  19. Zacharaki, A., Kostavelis, I., Gasteratos, A., Dokas, I.: Safety bounds in human robot interaction: a survey. Saf. Sci. 127, 104667 (2020)

    Article  Google Scholar 

  20. European Parliament: Civil law rules on robotics | Legislative Train Schedule. https://www.europarl.europa.eu/legislative-train/theme-area-of-justice-and-fundamental-rights/file-civil-law-rules-on-robotics. Accessed 28 Feb 2024

  21. Buchmann, R.A., Ghiran, A.-M., Döller, V., Karagiannis, D.: Conceptual modeling education as a “design problem”. CSIMQ (21), 21–33 (2019). https://doi.org/10.7250/csimq.2019-21.02

  22. Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Fundamental conceptual modeling languages in OMiLAB. In: Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 3–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6_1

    Chapter  Google Scholar 

  23. Guarino, N., Guizzardi, G., Mylopoulos, J.: On the philosophical foundations of conceptual models. In: Information Modelling and Knowledge Bases XXXI, pp. 1–15 (2019)

    Google Scholar 

  24. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Kurt Bauknecht, A., Tjoa, M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 182–182. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45705-4_19

    Chapter  Google Scholar 

  25. Bork, D., Karagiannis, D., Pittl, B.: How are metamodels specified in practice? Empirical insights and recommendations. In: Presented at the 24th Americas Conference on Information Systems, AMCIS 2018, New Orleans, LA, USA August 16 (2018)

    Google Scholar 

  26. Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906 (2021)

    Article  Google Scholar 

  27. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Los Angeles, Calif (2009)

    Google Scholar 

  28. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa

    Article  Google Scholar 

  29. Object Management Group (OMG): OMG® Unified Modeling Language® (2017). https://www.omg.org/spec/UML/2.5.1/PDF

  30. EU: Safe, efficient and integrated indoor robotic fleet for logistic applications in healthcare and commercial spaces | ENDORSE Project | Fact Sheet | H2020. https://cordis.europa.eu/project/id/823887. Accessed 05 May 2024

  31. Fraichard, T., Kuffner, J.J.: Guaranteeing motion safety for robots. Auton. Robot. 32, 173–175 (2012). https://doi.org/10.1007/s10514-012-9278-z

    Article  Google Scholar 

  32. Genser, A.: Design-based safety and security of robotic systems. Ind. Autom. Asia 40–41 (2022)

    Google Scholar 

  33. David, D., Thérouanne, P., Milhabet, I.: The acceptability of social robots: a scoping review of the recent literature. Comput. Hum. Behav. 137, 107419 (2022)

    Article  Google Scholar 

  34. Islam, S.O.B., Lughmani, W.A.: A connective framework for safe human-robot collaboration in cyber-physical production systems. Arab. J. Sci. Eng. 48, 11621–11644 (2023)

    Article  Google Scholar 

  35. Rubagotti, M., Tusseyeva, I., Baltabayeva, S., Summers, D., Sandygulova, A.: Perceived safety in physical human–robot interaction—a survey. Robot. Auton. Syst. 151, 104047 (2022). https://doi.org/10.1016/j.robot.2022.104047

    Article  Google Scholar 

  36. Vasic, M., Billard, A.: Safety issues in human-robot interactions. In: 2013 IEEE International Conference on Robotics and Automation. pp. 197–204. IEEE, Germany (2013)

    Google Scholar 

  37. Haddadin, S., De Luca, A., Albu-Schaffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33, 1292–1312 (2017)

    Article  Google Scholar 

  38. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a survey. Robot. Auton. Syst. 94, 43–52 (2017)

    Article  Google Scholar 

  39. Menzies, T., Pecheur, C.: Verification and validation and artificial intelligence. In: Advances in Computers, pp. 153–201. Elsevier (2005). https://doi.org/10.1016/S0065-2458(05)65004-8

  40. Dhillon, B.S., Fashandi, A.R.M.: Safety and reliability assessment techniques in robotics. Robotica 15, 701–708 (1997). https://doi.org/10.1017/S0263574797000829

    Article  Google Scholar 

  41. Visinsky, M.L., Cavallaro, J.R., Walker, I.D.: Robotic fault detection and fault tolerance: a survey. Reliab. Eng. Syst. Saf. 46, 139–158 (1994)

    Article  Google Scholar 

  42. Martinetti, A., Chemweno, P.K., Nizamis, K., Fosch-Villaronga, E.: Redefining safety in light of human-robot interaction: a critical review of current standards and regulations. Front. Chem. Eng. 3, 666237 (2021). https://doi.org/10.3389/fceng.2021.666237

    Article  Google Scholar 

  43. Michels, J.D., Walden, I.: How safe is safe enough? Improving cybersecurity in Europe’s critical infrastructure under the NIS directive. (December 7, 2018). In: Queen Mary School of Law Legal Studies Research Paper (2018)

    Google Scholar 

  44. Bekir, T.A.V.A.S.: Artificial intelligence and robotics and their impact on business systems. J. Soc. Humanit. Adm. Sci. 6(31), 1535–1546 (2020). https://doi.org/10.31589/JOSHAS.392

    Article  Google Scholar 

  45. Center for Devices and Radiological Health: Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA (2023)

    Google Scholar 

  46. Fosch-Villaronga, E., Mahler, T.: Cybersecurity, safety and robots: strengthening the link between cybersecurity and safety in the context of care robots. Comput. Law Secur. Rev. 41, 105528 (2021). https://doi.org/10.1016/j.clsr.2021.105528

    Article  Google Scholar 

  47. Stacey, N., Ellwood, P., Bradbrook, S., Reynolds, J., Williams, H.: Key trends and drivers of change in information and communication technologies and work location: foresight on new and emerging risks in OSH: Working report. In: European Agency for Safety and Health at Work, LU (2017)

    Google Scholar 

  48. Rinta-Kahila, T., Penttinen, E., Salovaara, A., Soliman, W.: Consequences of discontinuing knowledge work automation - surfacing of deskilling effects and methods of recovery. In: Presented at the Hawaii International Conference on System Sciences (2018)

    Google Scholar 

  49. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Depend. Sec. Comput. 1, 11–33 (2004)

    Article  Google Scholar 

  50. Pohl, K.: Requirements engineering. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12578-2

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Koutsopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koutsopoulos, G., Ioannidou, P., Matsopoulos, G.K., Koutsouris, D.D. (2024). Towards Model-driven Enhancement of Safety in Healthcare Robot Interactions. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71333-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71332-3

  • Online ISBN: 978-3-031-71333-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics