Abstract
In the continuously evolving landscape of healthcare technology, the evolution of robotics has revolutionized a wide spectrum of services. This situation created a variety of opportunities and challenges. One of the main challenges concerns the interaction of robots with human users and other robots, along with the safety aspect of such interactions. The current paper introduces a project aiming to tackle this challenge, initially via a literature review aiming to explore and structure the domain of robotic interactions in healthcare. Subsequently, the results are conceptualized in a domain meta-model, aiming to establish the foundation for an information system, based on a multi-view modeling approach, with the capabilities to support by documenting and facilitating safer interactions between healthcare robots and external agents. The current study focuses on the safety viewpoint of robotic interaction. The developed model is suitable for initiating the development of the abovementioned system that will use multi-view modeling principles. It is demonstrated in a use case derived from the associated ENDORSE EU project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pradhan, B., et al.: Internet of things and robotics in transforming current-day healthcare services. J. Healthc. Eng. 2021, 1–15 (2021). https://doi.org/10.1155/2021/9999504
Lestingi, L., Askarpour, M., Bersani, M.M., Rossi, M.: Formal verification of human-robot interaction in healthcare scenarios. In: De Boer, F., Cerone, A. (eds.) Software Engineering and Formal Methods, pp. 303–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-642-24690-6
Olaronke, I., Oluwaseun, O., Rhoda, I.: State of the art: a study of human-robot interaction in healthcare. IJIEEB. 9, 43–55 (2017). https://doi.org/10.5815/ijieeb.2017.03.06
International Organization for Standardization (ISO): ISO 13482:2014(en), Robots and robotic devices — Safety requirements for personal care robots. https://www.iso.org/obp/ui/#iso:std:iso:13482:ed-1:v1:en
International Organization for Standardization (ISO): ISO/TS 15066:2016(en), Robots and robotic devices — Collaborative robots
Haidegger, T., et al.: Industrial and medical cyber-physical systems: tackling user requirements and challenges in robotics. In: Kovács, L., Haidegger, T., Szakál, A. (eds.) Recent Advances in Intelligent Engineering, pp. 253–277. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-14350-3
Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Factors 58, 525–532 (2016). https://doi.org/10.1177/0018720816644364
Bork, D.: Using conceptual modeling for designing multi-view modeling tools. In: Presented at the Twenty-first Americas Conference on Information Systems. Puerto Rico (2015)
Sadeghnejad, S., Abadi, V.S.E., Jafari, B.: Rehabilitation robotics: History, applications, and recent advances. In: Medical and Healthcare Robotics, pp. 63–85. Elsevier (2023)
Vallès-Peris, N., Barat-Auleda, O., Domènech, M.: Robots in healthcare? what patients say. IJERPH. 18, 9933 (2021). https://doi.org/10.3390/ijerph18189933
Corke, P.: Introduction. In: Robotics. Vision and Control, pp. 1–19. Springer, Cham (2023)
Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., Šabanović, S.: Human-Robot Interaction: An Introduction. Cambridge University Press (2020). https://doi.org/10.1017/9781108676649
Taylor, R.H., Stoianovici, D.: Medical robotics in computer-integrated surgery. IEEE Trans. Robot. Automat. 19, 765–781 (2003). https://doi.org/10.1109/TRA.2003.817058
Zhou, B., Yang, G., Shi, Z., Ma, S.: Natural language processing for smart healthcare. arXiv:2110.15803 (2021). https://doi.org/10.48550/ARXIV.2110.15803
Mukherjee, D., Gupta, K., Chang, L.H., Najjaran, H.: A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot. Comput. Integr. Manuf. 73, 102231 (2022). https://doi.org/10.1016/j.rcim.2021.102231
Braglia, G., Tagliavini, M., Pini, F., Biagiotti, L.: Online motion planning for safe human-robot cooperation using B-splines and hidden markov models. Robotics 12, 118 (2023)
Sousa, S., Lamas, D., Dias, P.: A model for human-computer trust: contributions towards leveraging user engagement. In: Zaphiris, P., Ioannou, A. (eds.) Learning and Collaboration Technologies. Designing and Developing Novel Learning Experiences: First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, Part I, pp. 128–137. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-07482-5_13
Gualtieri, L., Rauch, E., Vidoni, R.: Development and validation of guidelines for safety in human-robot collaborative assembly systems. Comput. Ind. Eng. 163, 107801 (2022). https://doi.org/10.1016/j.cie.2021.107801
Zacharaki, A., Kostavelis, I., Gasteratos, A., Dokas, I.: Safety bounds in human robot interaction: a survey. Saf. Sci. 127, 104667 (2020)
European Parliament: Civil law rules on robotics | Legislative Train Schedule. https://www.europarl.europa.eu/legislative-train/theme-area-of-justice-and-fundamental-rights/file-civil-law-rules-on-robotics. Accessed 28 Feb 2024
Buchmann, R.A., Ghiran, A.-M., Döller, V., Karagiannis, D.: Conceptual modeling education as a “design problem”. CSIMQ (21), 21–33 (2019). https://doi.org/10.7250/csimq.2019-21.02
Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Fundamental conceptual modeling languages in OMiLAB. In: Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 3–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6_1
Guarino, N., Guizzardi, G., Mylopoulos, J.: On the philosophical foundations of conceptual models. In: Information Modelling and Knowledge Bases XXXI, pp. 1–15 (2019)
Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Kurt Bauknecht, A., Tjoa, M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 182–182. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45705-4_19
Bork, D., Karagiannis, D., Pittl, B.: How are metamodels specified in practice? Empirical insights and recommendations. In: Presented at the 24th Americas Conference on Information Systems, AMCIS 2018, New Orleans, LA, USA August 16 (2018)
Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906 (2021)
Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Los Angeles, Calif (2009)
Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa
Object Management Group (OMG): OMG® Unified Modeling Language® (2017). https://www.omg.org/spec/UML/2.5.1/PDF
EU: Safe, efficient and integrated indoor robotic fleet for logistic applications in healthcare and commercial spaces | ENDORSE Project | Fact Sheet | H2020. https://cordis.europa.eu/project/id/823887. Accessed 05 May 2024
Fraichard, T., Kuffner, J.J.: Guaranteeing motion safety for robots. Auton. Robot. 32, 173–175 (2012). https://doi.org/10.1007/s10514-012-9278-z
Genser, A.: Design-based safety and security of robotic systems. Ind. Autom. Asia 40–41 (2022)
David, D., Thérouanne, P., Milhabet, I.: The acceptability of social robots: a scoping review of the recent literature. Comput. Hum. Behav. 137, 107419 (2022)
Islam, S.O.B., Lughmani, W.A.: A connective framework for safe human-robot collaboration in cyber-physical production systems. Arab. J. Sci. Eng. 48, 11621–11644 (2023)
Rubagotti, M., Tusseyeva, I., Baltabayeva, S., Summers, D., Sandygulova, A.: Perceived safety in physical human–robot interaction—a survey. Robot. Auton. Syst. 151, 104047 (2022). https://doi.org/10.1016/j.robot.2022.104047
Vasic, M., Billard, A.: Safety issues in human-robot interactions. In: 2013 IEEE International Conference on Robotics and Automation. pp. 197–204. IEEE, Germany (2013)
Haddadin, S., De Luca, A., Albu-Schaffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33, 1292–1312 (2017)
Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a survey. Robot. Auton. Syst. 94, 43–52 (2017)
Menzies, T., Pecheur, C.: Verification and validation and artificial intelligence. In: Advances in Computers, pp. 153–201. Elsevier (2005). https://doi.org/10.1016/S0065-2458(05)65004-8
Dhillon, B.S., Fashandi, A.R.M.: Safety and reliability assessment techniques in robotics. Robotica 15, 701–708 (1997). https://doi.org/10.1017/S0263574797000829
Visinsky, M.L., Cavallaro, J.R., Walker, I.D.: Robotic fault detection and fault tolerance: a survey. Reliab. Eng. Syst. Saf. 46, 139–158 (1994)
Martinetti, A., Chemweno, P.K., Nizamis, K., Fosch-Villaronga, E.: Redefining safety in light of human-robot interaction: a critical review of current standards and regulations. Front. Chem. Eng. 3, 666237 (2021). https://doi.org/10.3389/fceng.2021.666237
Michels, J.D., Walden, I.: How safe is safe enough? Improving cybersecurity in Europe’s critical infrastructure under the NIS directive. (December 7, 2018). In: Queen Mary School of Law Legal Studies Research Paper (2018)
Bekir, T.A.V.A.S.: Artificial intelligence and robotics and their impact on business systems. J. Soc. Humanit. Adm. Sci. 6(31), 1535–1546 (2020). https://doi.org/10.31589/JOSHAS.392
Center for Devices and Radiological Health: Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA (2023)
Fosch-Villaronga, E., Mahler, T.: Cybersecurity, safety and robots: strengthening the link between cybersecurity and safety in the context of care robots. Comput. Law Secur. Rev. 41, 105528 (2021). https://doi.org/10.1016/j.clsr.2021.105528
Stacey, N., Ellwood, P., Bradbrook, S., Reynolds, J., Williams, H.: Key trends and drivers of change in information and communication technologies and work location: foresight on new and emerging risks in OSH: Working report. In: European Agency for Safety and Health at Work, LU (2017)
Rinta-Kahila, T., Penttinen, E., Salovaara, A., Soliman, W.: Consequences of discontinuing knowledge work automation - surfacing of deskilling effects and methods of recovery. In: Presented at the Hawaii International Conference on System Sciences (2018)
Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Depend. Sec. Comput. 1, 11–33 (2004)
Pohl, K.: Requirements engineering. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12578-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Koutsopoulos, G., Ioannidou, P., Matsopoulos, G.K., Koutsouris, D.D. (2024). Towards Model-driven Enhancement of Safety in Healthcare Robot Interactions. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-71333-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71332-3
Online ISBN: 978-3-031-71333-0
eBook Packages: Computer ScienceComputer Science (R0)