Abstract
Organisational rules, both created internally and externally mandated, are vital to an enterprise. Yet, understanding and managing these rules is problematic, as they are a part of a complex system. Thus, there is a need to view them in a complex setting of organisational actors and interactions. It has been suggested that enterprises, particularly in situations like collaboration in healthcare, should be analysed as complex adaptive systems (CAS). However, only some enterprise modelling contributions can represent perspectives of CAS theory. In this paper, we set out to examine how organisational rules in complex adaptive systems has been modelled. A systematic mapping study was conducted on modelling languages of organisational rules in collaborations, resulting in 22 identified languages. The constructs and modelling patterns of the identified languages were mapped against an analytical framework that included 15 concepts from CAS theory. Overall, even though most CAS concepts had yet to be addressed by the identified languages, potentially useful approaches were found, related to: abstraction of large organisational rule systems through power relations; interpretation and implementation of rules; feedback loops to rule-makers, including delays.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackoff, R.L.: The art and science of mess management. Interfaces 11(1), 20–26 (1981). https://www.jstor.org/stable/25060027, publisher: INFORMS
Anderson, P.: Perspective: complexity theory and organization science. Organ. Sci. 10(3), 216–232 (1999). https://doi.org/10.1287/orsc.10.3.216
Aunger, J.A., Millar, R., Greenhalgh, J., Mannion, R., Rafferty, A.M., McLeod, H.: Why do some inter-organisational collaborations in healthcare work when others do not? A realist review. Syst. Rev. 10(1), 82 (2021). https://doi.org/10.1186/s13643-021-01630-8
Axelsson, R., Axelsson, S.B.: Integration and collaboration in public Health-A conceptual framework. Int. J. Health Plann. Manage. 21(1), 75–88 (2006). https://doi.org/10.1002/hpm.826
Beer, S.: The viable system model: its provenance, development, methodology and pathology. J. Oper. Res. Soc. 35(1), 7–25 (1984). https://doi.org/10.2307/2581927, https://www.jstor.org/stable/2581927, publisher: Palgrave Macmillan Journals
Burns, T.R., Flam, H.: The Shaping of Social Organization. Swedish Collegium for Advanced Study in the Social Sciences, SAGE Publications, London, England (1987)
Carmichael, T., Hadžikadić, M.: The fundamentals of complex adaptive systems. In: Carmichael, T., Collins, A.J., Hadžikadić, M. (eds.) Complex Adaptive Systems: Views from the Physical, Natural, and Social Sciences, pp. 1–16. Springer International Publishing, Cham, Understanding Complex Systems (2019)
Colchester, J.J.: Systems + Complexity An Overview. CreateSpace Independent Publishing Platform, 1st edn. (2016)
Ellis, B.: An overview of complexity theory: understanding primary care as a complex adaptive system. In: Handbook of Systems and Complexity in Health. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4998-0
Evans, W.H.: Constraints that Enable Innovation - Alicia Juarrero (2015). https://vimeo.com/128934608
Fraser, S.W., Greenhalgh, T.: Complexity science: coping with complexity: educating for capability. BMJ: British Med. J. 323(7316), 799–803 (2001). https://www.jstor.org/stable/25468057, publisher: BMJ
Henkel, M., Perjons, E., Lappalainen, K.F., Fors, U., Sjöberg, C.M.: Digitalization of health and social care collaboration: identification of problems and solutions. In: Joint Proceedings of RCIS 2024 Workshops and Research Projects Track. CEUR Workshop Proceedings, Guimarães, Portugal (2024). https://ceur-ws.org/Vol-3674/RP-paper8.pdf
Karagiannis, D., Kuhn, H.: Metamodelling platforms. In: EC-web, vol. 2455, p. 182. Citeseer (2002)
Kitchenham, B., Charters, S., et al.: Guidelines for performing systematic literature reviews in software engineering (2007)
Krogstie, J.: Model-Based Development and Evolution of Information Systems. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2936-3
Lindeberg, J., Henkel, M., Svee, E.: Modelling languages and CAS concepts for systematic mapping study (2024). https://github.com/JoranL/organisational-rules/raw/main/supplementbir2024lindebergetal.ods
Meadows, D.H.: Thinking in Systems: A Primer. Earthscan (2008)
Plsek, P.E., Greenhalgh, T.: Complexity science: the challenge of complexity in health care. BMJ: British Med. J. 323(7313), 625–628 (2001). https://doi.org/10.1136/bmj.323.7313.625
Rouse, W.B.: Health care as a complex adaptive system: implications for design and management. Bridge-Washington-Nat. Acad. Eng. 38(1), 17 (2008)
Snowden, D.: Constraints (2022). https://cynefin.io/wiki/Constraints
Stacey, R.: Tools and Techniques of Leadership and Management: Meeting the Challenge of Complexity. Routledge, London (2012). https://doi.org/10.4324/9780203115893
Stirna, J., Persson, A.: Enterprise Modeling: Facilitating the Process and the People. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-94857-7
Sturmberg, J.P., Miles, A.: The complex nature of knowledge. In: Handbook of Systems and Complexity in Health. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4998-0
Turner, J.R., Baker, R.M.: Complexity theory: an overview with potential applications for the social sciences. Systems 7(1), 4 (2019). https://doi.org/10.3390/systems7010004
Wilson, D.S., Madhavan, G., Gelfand, M.J., Hayes, S.C., Atkins, P.W.B., Colwell, R.R.: Multilevel cultural evolution: from new theory to practical applications. Proc. Natl. Acad. Sci. 120(16) (2023). https://doi.org/10.1073/pnas.2218222120
Zhu, K., Schulz, M.: The dynamics of embedded rules: how do rule networks affect knowledge uptake of rules in healthcare? J. Manag. Stud. 56(8), 1683–1712 (2019). https://doi.org/10.1111/joms.12529
Zimmerman, B.: How complexity science is transforming healthcare. In: The SAGE Handbook of Complexity and Management, pp. 617–635. SAGE Publications Ltd. (2011). https://doi.org/10.4135/9781446201084
Ålenius, A., Saleh, B., Hedberg, K., Wolff, P.: Delbetänkande av Utredningen om infrastruktur för hälsodata som nationellt intresse (2023:83). Statens Offentliga Utredningar, Regeringskansliet (2023)
IDEF0 – Function modeling method – IDEF. https://www.idef.com/
Semantics of business vocabulary and business rules. Version 1.5. Tech. rep., Object Management Group (OMG) (2019). https://www.omg.org/spec/SBVR/1.5/Beta1/PDF
Allison, D.S., Kamoun, A., Capretz, M.A.M., Tazi, S., Drira, K., ElYamany, H.F.: An ontology driven privacy framework for collaborative working environments. Int. J. Auton. Adapt. Commun. Syst. 9(3/4), 243–268 (2016). https://doi.org/10.1504/IJAACS.2016.079624
Benaben, F., et al.: Model-driven engineering of mediation information system for enterprise interoperability. Int. J. Comput. Integr. Manuf. 31(1), 27–48 (2018). https://doi.org/10.1080/0951192X.2017.1379093
Cho, H., Kulvatunyou, B., Jeong, H., Jones, A.: Using business process specifications and agents to integrate a scenario-driven supply chain. Int. J. Comput. Integr. Manuf. 17(6), 546–560 (2004). https://doi.org/10.1080/0951192042000193671
Dalmau-Espert, J., Llorens-Largo, F., Compa-Rosique, P., Satorre-Cuerda, R., Molina-Carmona, R.: Leveraging information for high level-of-abstraction organizational processes. Int. J. Des. Nat. Ecodyn. 11(3), 416–427 (2016). https://doi.org/10.2495/DNE-V11-N3-416-427
Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 language guide (2016). https://doi.org/10.48550/arXiv.1605.07767
Diamantini, C., Potena, D., Proietti, M., Smith, F., Storti, E., Taglino, F.: A semantic framework for knowledge management in virtual innovation factories. Int. J. Inf. Syst. Model. Des. (IJISMD) 4(4), 70–92 (2013). https://doi.org/10.4018/ijismd.2013100104
Estrada-Torres, B., et al.: Measuring performance in knowledge-intensive processes. ACM Trans. Internet Technol. 19(1), 15:1–15:26 (2019). https://doi.org/10.1145/3289180
Fayoumi, A., Williams, R.: An integrated socio-technical enterprise modelling: a scenario of healthcare system analysis and design. J. Ind. Inf. Integr. 23, 100221 (2021). https://doi.org/10.1016/j.jii.2021.100221
Garrido, J.L., Noguera, M., González, M., Hurtado, M.V., Rodríguez, M.L.: Definition and use of computation independent models in an MDA-based groupware development process. Sci. Comput. Program. 66(1), 25–43 (2007). https://doi.org/10.1016/j.scico.2006.10.008
Gong, R., Ning, K., Li, Q., O’Sullivan, D., Chen, Y., Decker, S.: Context modeling and measuring for proactive resource recommendation in business collaboration. Comput. Ind. Eng. 57(1), 27–36 (2009). https://doi.org/10.1016/j.cie.2008.07.003
Heintz, J., Belaud, J.P., Gerbaud, V.: Chemical enterprise model and decision-making framework for sustainable chemical product design. Comput. Ind. 65(3), 505–520 (2014). https://doi.org/10.1016/j.compind.2014.01.010
Janowski, T., Lugo, G.G., Zheng, H.: Modelling an extended/virtual enterprise by the composition of enterprise models. J. Intell. Rob. Syst. 26(3), 303–324 (1999). https://doi.org/10.1023/A:1008141227185
Kim, G.Y., Lee, J.Y., Park, Y.H., Noh, S.D.: Product life cycle information and process analysis methodology: integrated information and process analysis for product life cycle management. Concurr. Eng. 20(4), 257–274 (2012). https://doi.org/10.1177/1063293X12460863
Konstantinidis, G., Chapman, A., Weal, M.J., Alzubaidi, A., Ballard, L.M., Lucassen, A.M.: The need for machine-processable agreements in health data management. Algorithms 13(4), 87 (2020). https://doi.org/10.3390/a13040087
Narendra, N.C., Norta, A., Mahunnah, M., Ma, L., Maggi, F.M.: Sound conflict management and resolution for virtual-enterprise collaborations. SOCA 10(3), 233–251 (2016). https://doi.org/10.1007/s11761-015-0183-0
Paja, E., Dalpiaz, F., Giorgini, P.: Modelling and reasoning about security requirements in socio-technical systems. Data Knowl. Eng. 98, 123–143 (2015). https://doi.org/10.1016/j.datak.2015.07.007
Romero, D., Galeano, N., Molina, A.: Virtual organisation breeding environments value system and its elements. J. Intell. Manuf. 21(3), 267–286 (2010). https://doi.org/10.1007/s10845-008-0179-0
Sadigh, B.L., Unver, H.O., Nikghadam, S., Dogdu, E., Ozbayoglu, A.M., Kilic, S.E.: An ontology-based multi-agent virtual enterprise system (OMAVE): part 1: domain modelling and rule management. Int. J. Comput. Integr. Manuf. 30(2–3), 320–343 (2017). https://doi.org/10.1080/0951192X.2016.1145811
Sahraoui, Y., et al.: Integrating ecological networks modelling in a participatory approach for assessing impacts of planning scenarios on landscape connectivity. Landscape Urban Plann. 209, 104039 (2021). https://doi.org/10.1016/j.landurbplan.2021.104039, https://www.sciencedirect.com/science/article/pii/S0169204621000025
da Silva Serapião Leal, G., Guédria, W., Panetto, H.: An ontology for interoperability assessment: a systemic approach. J. Ind. Inf. Integr. 16, 100100 (2019). https://doi.org/10.1016/j.jii.2019.07.001
Sjoukema, J.W., Samia, J., Bregt, A.K., Crompvoets, J.: Governance interactions of spatial data infrastructures: an agent-based modelling approach. Int. J. Digit. Earth 14(6), 696–713 (2021). publisher: Taylor & Francis _eprint: https://doi.org/10.1080/17538947.2020.1868585
Tauqeer, A., Kurteva, A., Chhetri, T.R., Ahmeti, A., Fensel, A.: Automated GDPR contract compliance verification using knowledge graphs. Information 13(10), 447 (2022). https://doi.org/10.3390/info13100447
Teruel, M.A., Maté, A., Navarro, E., González, P., Trujillo, J.C.: The new era of business intelligence applications: building from a collaborative point of view. Bus. Inf. Syst. Eng. 61(5), 615–634 (2019). https://doi.org/10.1007/s12599-019-00578-3
Villa, A., Bruno, G.: Promoting SME cooperative aggregations: main criteria and contractual models. Int. J. Prod. Res. 51(23–24), 7439–7447 (2013). https://doi.org/10.1080/00207543.2013.831503
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lindeberg, J., Henkel, M., Svee, EO. (2024). Modelling of Organisational Rules in Complex Adaptive Systems: a Systematic Mapping Study. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-71333-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71332-3
Online ISBN: 978-3-031-71333-0
eBook Packages: Computer ScienceComputer Science (R0)