Skip to main content

Modelling of Organisational Rules in Complex Adaptive Systems: a Systematic Mapping Study

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2024)

Abstract

Organisational rules, both created internally and externally mandated, are vital to an enterprise. Yet, understanding and managing these rules is problematic, as they are a part of a complex system. Thus, there is a need to view them in a complex setting of organisational actors and interactions. It has been suggested that enterprises, particularly in situations like collaboration in healthcare, should be analysed as complex adaptive systems (CAS). However, only some enterprise modelling contributions can represent perspectives of CAS theory. In this paper, we set out to examine how organisational rules in complex adaptive systems has been modelled. A systematic mapping study was conducted on modelling languages of organisational rules in collaborations, resulting in 22 identified languages. The constructs and modelling patterns of the identified languages were mapped against an analytical framework that included 15 concepts from CAS theory. Overall, even though most CAS concepts had yet to be addressed by the identified languages, potentially useful approaches were found, related to: abstraction of large organisational rule systems through power relations; interpretation and implementation of rules; feedback loops to rule-makers, including delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackoff, R.L.: The art and science of mess management. Interfaces 11(1), 20–26 (1981). https://www.jstor.org/stable/25060027, publisher: INFORMS

  2. Anderson, P.: Perspective: complexity theory and organization science. Organ. Sci. 10(3), 216–232 (1999). https://doi.org/10.1287/orsc.10.3.216

    Article  Google Scholar 

  3. Aunger, J.A., Millar, R., Greenhalgh, J., Mannion, R., Rafferty, A.M., McLeod, H.: Why do some inter-organisational collaborations in healthcare work when others do not? A realist review. Syst. Rev. 10(1), 82 (2021). https://doi.org/10.1186/s13643-021-01630-8

    Article  Google Scholar 

  4. Axelsson, R., Axelsson, S.B.: Integration and collaboration in public Health-A conceptual framework. Int. J. Health Plann. Manage. 21(1), 75–88 (2006). https://doi.org/10.1002/hpm.826

    Article  MathSciNet  Google Scholar 

  5. Beer, S.: The viable system model: its provenance, development, methodology and pathology. J. Oper. Res. Soc. 35(1), 7–25 (1984). https://doi.org/10.2307/2581927, https://www.jstor.org/stable/2581927, publisher: Palgrave Macmillan Journals

  6. Burns, T.R., Flam, H.: The Shaping of Social Organization. Swedish Collegium for Advanced Study in the Social Sciences, SAGE Publications, London, England (1987)

    Google Scholar 

  7. Carmichael, T., Hadžikadić, M.: The fundamentals of complex adaptive systems. In: Carmichael, T., Collins, A.J., Hadžikadić, M. (eds.) Complex Adaptive Systems: Views from the Physical, Natural, and Social Sciences, pp. 1–16. Springer International Publishing, Cham, Understanding Complex Systems (2019)

    Google Scholar 

  8. Colchester, J.J.: Systems + Complexity An Overview. CreateSpace Independent Publishing Platform, 1st edn. (2016)

    Google Scholar 

  9. Ellis, B.: An overview of complexity theory: understanding primary care as a complex adaptive system. In: Handbook of Systems and Complexity in Health. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4998-0

  10. Evans, W.H.: Constraints that Enable Innovation - Alicia Juarrero (2015). https://vimeo.com/128934608

  11. Fraser, S.W., Greenhalgh, T.: Complexity science: coping with complexity: educating for capability. BMJ: British Med. J. 323(7316), 799–803 (2001). https://www.jstor.org/stable/25468057, publisher: BMJ

  12. Henkel, M., Perjons, E., Lappalainen, K.F., Fors, U., Sjöberg, C.M.: Digitalization of health and social care collaboration: identification of problems and solutions. In: Joint Proceedings of RCIS 2024 Workshops and Research Projects Track. CEUR Workshop Proceedings, Guimarães, Portugal (2024). https://ceur-ws.org/Vol-3674/RP-paper8.pdf

  13. Karagiannis, D., Kuhn, H.: Metamodelling platforms. In: EC-web, vol. 2455, p. 182. Citeseer (2002)

    Google Scholar 

  14. Kitchenham, B., Charters, S., et al.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  15. Krogstie, J.: Model-Based Development and Evolution of Information Systems. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2936-3

  16. Lindeberg, J., Henkel, M., Svee, E.: Modelling languages and CAS concepts for systematic mapping study (2024). https://github.com/JoranL/organisational-rules/raw/main/supplementbir2024lindebergetal.ods

  17. Meadows, D.H.: Thinking in Systems: A Primer. Earthscan (2008)

    Google Scholar 

  18. Plsek, P.E., Greenhalgh, T.: Complexity science: the challenge of complexity in health care. BMJ: British Med. J. 323(7313), 625–628 (2001). https://doi.org/10.1136/bmj.323.7313.625

  19. Rouse, W.B.: Health care as a complex adaptive system: implications for design and management. Bridge-Washington-Nat. Acad. Eng. 38(1), 17 (2008)

    Google Scholar 

  20. Snowden, D.: Constraints (2022). https://cynefin.io/wiki/Constraints

  21. Stacey, R.: Tools and Techniques of Leadership and Management: Meeting the Challenge of Complexity. Routledge, London (2012). https://doi.org/10.4324/9780203115893

  22. Stirna, J., Persson, A.: Enterprise Modeling: Facilitating the Process and the People. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-94857-7

  23. Sturmberg, J.P., Miles, A.: The complex nature of knowledge. In: Handbook of Systems and Complexity in Health. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4998-0

  24. Turner, J.R., Baker, R.M.: Complexity theory: an overview with potential applications for the social sciences. Systems 7(1), 4 (2019). https://doi.org/10.3390/systems7010004

    Article  Google Scholar 

  25. Wilson, D.S., Madhavan, G., Gelfand, M.J., Hayes, S.C., Atkins, P.W.B., Colwell, R.R.: Multilevel cultural evolution: from new theory to practical applications. Proc. Natl. Acad. Sci. 120(16) (2023). https://doi.org/10.1073/pnas.2218222120

  26. Zhu, K., Schulz, M.: The dynamics of embedded rules: how do rule networks affect knowledge uptake of rules in healthcare? J. Manag. Stud. 56(8), 1683–1712 (2019). https://doi.org/10.1111/joms.12529

    Article  Google Scholar 

  27. Zimmerman, B.: How complexity science is transforming healthcare. In: The SAGE Handbook of Complexity and Management, pp. 617–635. SAGE Publications Ltd. (2011). https://doi.org/10.4135/9781446201084

  28. Ålenius, A., Saleh, B., Hedberg, K., Wolff, P.: Delbetänkande av Utredningen om infrastruktur för hälsodata som nationellt intresse (2023:83). Statens Offentliga Utredningar, Regeringskansliet (2023)

    Google Scholar 

  29. IDEF0 – Function modeling method – IDEF. https://www.idef.com/

  30. Semantics of business vocabulary and business rules. Version 1.5. Tech. rep., Object Management Group (OMG) (2019). https://www.omg.org/spec/SBVR/1.5/Beta1/PDF

  31. Allison, D.S., Kamoun, A., Capretz, M.A.M., Tazi, S., Drira, K., ElYamany, H.F.: An ontology driven privacy framework for collaborative working environments. Int. J. Auton. Adapt. Commun. Syst. 9(3/4), 243–268 (2016). https://doi.org/10.1504/IJAACS.2016.079624

    Article  Google Scholar 

  32. Benaben, F., et al.: Model-driven engineering of mediation information system for enterprise interoperability. Int. J. Comput. Integr. Manuf. 31(1), 27–48 (2018). https://doi.org/10.1080/0951192X.2017.1379093

    Article  Google Scholar 

  33. Cho, H., Kulvatunyou, B., Jeong, H., Jones, A.: Using business process specifications and agents to integrate a scenario-driven supply chain. Int. J. Comput. Integr. Manuf. 17(6), 546–560 (2004). https://doi.org/10.1080/0951192042000193671

    Article  Google Scholar 

  34. Dalmau-Espert, J., Llorens-Largo, F., Compa-Rosique, P., Satorre-Cuerda, R., Molina-Carmona, R.: Leveraging information for high level-of-abstraction organizational processes. Int. J. Des. Nat. Ecodyn. 11(3), 416–427 (2016). https://doi.org/10.2495/DNE-V11-N3-416-427

    Article  Google Scholar 

  35. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 language guide (2016). https://doi.org/10.48550/arXiv.1605.07767

  36. Diamantini, C., Potena, D., Proietti, M., Smith, F., Storti, E., Taglino, F.: A semantic framework for knowledge management in virtual innovation factories. Int. J. Inf. Syst. Model. Des. (IJISMD) 4(4), 70–92 (2013). https://doi.org/10.4018/ijismd.2013100104

    Article  Google Scholar 

  37. Estrada-Torres, B., et al.: Measuring performance in knowledge-intensive processes. ACM Trans. Internet Technol. 19(1), 15:1–15:26 (2019). https://doi.org/10.1145/3289180

  38. Fayoumi, A., Williams, R.: An integrated socio-technical enterprise modelling: a scenario of healthcare system analysis and design. J. Ind. Inf. Integr. 23, 100221 (2021). https://doi.org/10.1016/j.jii.2021.100221

    Article  Google Scholar 

  39. Garrido, J.L., Noguera, M., González, M., Hurtado, M.V., Rodríguez, M.L.: Definition and use of computation independent models in an MDA-based groupware development process. Sci. Comput. Program. 66(1), 25–43 (2007). https://doi.org/10.1016/j.scico.2006.10.008

    Article  MathSciNet  Google Scholar 

  40. Gong, R., Ning, K., Li, Q., O’Sullivan, D., Chen, Y., Decker, S.: Context modeling and measuring for proactive resource recommendation in business collaboration. Comput. Ind. Eng. 57(1), 27–36 (2009). https://doi.org/10.1016/j.cie.2008.07.003

    Article  Google Scholar 

  41. Heintz, J., Belaud, J.P., Gerbaud, V.: Chemical enterprise model and decision-making framework for sustainable chemical product design. Comput. Ind. 65(3), 505–520 (2014). https://doi.org/10.1016/j.compind.2014.01.010

    Article  Google Scholar 

  42. Janowski, T., Lugo, G.G., Zheng, H.: Modelling an extended/virtual enterprise by the composition of enterprise models. J. Intell. Rob. Syst. 26(3), 303–324 (1999). https://doi.org/10.1023/A:1008141227185

    Article  Google Scholar 

  43. Kim, G.Y., Lee, J.Y., Park, Y.H., Noh, S.D.: Product life cycle information and process analysis methodology: integrated information and process analysis for product life cycle management. Concurr. Eng. 20(4), 257–274 (2012). https://doi.org/10.1177/1063293X12460863

    Article  Google Scholar 

  44. Konstantinidis, G., Chapman, A., Weal, M.J., Alzubaidi, A., Ballard, L.M., Lucassen, A.M.: The need for machine-processable agreements in health data management. Algorithms 13(4), 87 (2020). https://doi.org/10.3390/a13040087

    Article  Google Scholar 

  45. Narendra, N.C., Norta, A., Mahunnah, M., Ma, L., Maggi, F.M.: Sound conflict management and resolution for virtual-enterprise collaborations. SOCA 10(3), 233–251 (2016). https://doi.org/10.1007/s11761-015-0183-0

    Article  Google Scholar 

  46. Paja, E., Dalpiaz, F., Giorgini, P.: Modelling and reasoning about security requirements in socio-technical systems. Data Knowl. Eng. 98, 123–143 (2015). https://doi.org/10.1016/j.datak.2015.07.007

    Article  Google Scholar 

  47. Romero, D., Galeano, N., Molina, A.: Virtual organisation breeding environments value system and its elements. J. Intell. Manuf. 21(3), 267–286 (2010). https://doi.org/10.1007/s10845-008-0179-0

    Article  Google Scholar 

  48. Sadigh, B.L., Unver, H.O., Nikghadam, S., Dogdu, E., Ozbayoglu, A.M., Kilic, S.E.: An ontology-based multi-agent virtual enterprise system (OMAVE): part 1: domain modelling and rule management. Int. J. Comput. Integr. Manuf. 30(2–3), 320–343 (2017). https://doi.org/10.1080/0951192X.2016.1145811

    Article  Google Scholar 

  49. Sahraoui, Y., et al.: Integrating ecological networks modelling in a participatory approach for assessing impacts of planning scenarios on landscape connectivity. Landscape Urban Plann. 209, 104039 (2021). https://doi.org/10.1016/j.landurbplan.2021.104039, https://www.sciencedirect.com/science/article/pii/S0169204621000025

  50. da Silva Serapião Leal, G., Guédria, W., Panetto, H.: An ontology for interoperability assessment: a systemic approach. J. Ind. Inf. Integr. 16, 100100 (2019). https://doi.org/10.1016/j.jii.2019.07.001

  51. Sjoukema, J.W., Samia, J., Bregt, A.K., Crompvoets, J.: Governance interactions of spatial data infrastructures: an agent-based modelling approach. Int. J. Digit. Earth 14(6), 696–713 (2021). publisher: Taylor & Francis _eprint: https://doi.org/10.1080/17538947.2020.1868585

  52. Tauqeer, A., Kurteva, A., Chhetri, T.R., Ahmeti, A., Fensel, A.: Automated GDPR contract compliance verification using knowledge graphs. Information 13(10), 447 (2022). https://doi.org/10.3390/info13100447

    Article  Google Scholar 

  53. Teruel, M.A., Maté, A., Navarro, E., González, P., Trujillo, J.C.: The new era of business intelligence applications: building from a collaborative point of view. Bus. Inf. Syst. Eng. 61(5), 615–634 (2019). https://doi.org/10.1007/s12599-019-00578-3

    Article  Google Scholar 

  54. Villa, A., Bruno, G.: Promoting SME cooperative aggregations: main criteria and contractual models. Int. J. Prod. Res. 51(23–24), 7439–7447 (2013). https://doi.org/10.1080/00207543.2013.831503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jöran Lindeberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindeberg, J., Henkel, M., Svee, EO. (2024). Modelling of Organisational Rules in Complex Adaptive Systems: a Systematic Mapping Study. In: Řepa, V., Matulevičius, R., Laurenzi, E. (eds) Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Processing, vol 529. Springer, Cham. https://doi.org/10.1007/978-3-031-71333-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71333-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71332-3

  • Online ISBN: 978-3-031-71333-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics