Skip to main content

FEKNN: A Wi-Fi Indoor Localization Method Based on Feature Enhancement and KNN

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Abstract

Utilizing Wi-Fi signals for indoor localization significantly improves location-based services in indoor environments, though challenges arise due to unpredictable Wi-Fi signal propagation. We propose an innovative Feature Enhancement and K-Nearest Neighbor (FEKNN) approach, which refines RSSI data distribution for a more accurate feature database and employs a refined Weighted K-Nearest Neighbor (W-KNN) algorithm to calculate locations by Euclidean distances between enhanced features. Extensive experiments validate that our FEKNN has remarkable accuracy for indoor localization applications, achieving state-of-the-art performance with an impressive average localization error of 1.86 meters on the public UjiIndoorLoc testing dataset, and an average error of 0.68 meters on our custom-built dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Z., He, S., Shu, Y., Shi, Z.: A self-evolving WIFI-based indoor navigation system using smartphones. IEEE Trans. Mob. Comput. 19(8), 1760–1774 (2020)

    Google Scholar 

  2. Zhuang, Y., Syed, Z., Li, Y., El-Sheimy, N.: Evaluation of two WIFI positioning systems based on autonomous crowdsourcing of handheld devices for indoor navigation. IEEE Trans. Mob. Comput. 15(8), 1982–1995 (2016)

    Article  Google Scholar 

  3. Torres, J., et al.: How feasible is WIFI fingerprint-based indoor positioning for in-home monitoring? In: 2016 12th International Conference on Intelligent Environments (IE), pp. 68–75 (2016)

    Google Scholar 

  4. Li, X., et al.: Indotrack: device-free indoor human tracking with commodity WI-FI. In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(3), pp. 1–22 (2017)

    Google Scholar 

  5. Chen, X., Chen, Y., Yu, Q.: Smart home system with bluetooth and WI-FI as communication mode. In: 2021 International Conference on Digital Society and Intelligent Systems (DSInS), pp. 143–147 (2021)

    Google Scholar 

  6. Bellavista-Parent, V., Torres-Sospedra, J., Perez-Navarro, A.: New trends in indoor positioning based on WIFI and machine learning: a systematic review. In: 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8 (2021)

    Google Scholar 

  7. Aydin, H.M., Ali, M.A., Soyak, E.G.: The analysis of feature selection with machine learning for indoor positioning. In: 2021 29th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2021)

    Google Scholar 

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. science, 313(5786), 504–507 (2006)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). arXiv preprint arXiv:1312.6114

  10. Ebaid, E., Navaie, K.: Optimum NN algorithms parameters on the ujiindoorloc for WI-FI fingerprinting indoor positioning systems. In: 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), pp. 280–286 (2022)

    Google Scholar 

  11. Irsan, F.A.S., Aminah, N.S., Djamal, M.: RSSI - WIFI based indoor position tracking system using support vector machine (SVM). In: 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–5 (2022)

    Google Scholar 

  12. Mittal, A., Tiku, S., Pasricha, S.: Adapting convolutional neural networks for indoor localization with smart mobile devices. In: Proceedings of the 2018 on Great Lakes Symposium on VLSI, GLSVLSI 2018, page 117-122, New York, NY, USA, 2018. Association for Computing Machinery

    Google Scholar 

  13. Torres-Sospedra, J., et al.: Ujiindoorloc: a new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 261–270 (2014)

    Google Scholar 

  14. Pasricha, S., Ugave, V., Anderson, C.W., Han, Q:. Learnloc: a framework for smart indoor localization with embedded mobile devices. In: 2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 37–44 (2015)

    Google Scholar 

  15. Adege, A.B., et al.: Applying deep neural network (DNN) for large-scale indoor localization using feed-forward neural network (FFNN) algorithm. In: 2018 IEEE International Conference on Applied System Invention (ICASI), pp. 814–817 (2018)

    Google Scholar 

  16. Chen, T., et al.: Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1–4 (2015)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Proc. Syst. 25 (2012)

    Google Scholar 

  18. Han, E.H., Karypis, G., Kumar, V.: Text categorization using weight adjusted k-nearest neighbor classification. In: Advances in Knowledge Discovery and Data Mining: 5th Pacific-Asia Conference, PAKDD 2001 Hong Kong, China, April 16–18, 2001 Proceedings 5, pp. 53–65. Springer (2001)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Proc. Syst. 30 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Beijing Natural Science Foundation L231013, and in part by the National Science Foundation of China (62376271, U21A20515, U22B2034, 62365014, 62262043, and 62171321).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiliang Meng or Jiguang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Yang, J., Li, B., Meng, W., Zhang, J., Zhang, X. (2025). FEKNN: A Wi-Fi Indoor Localization Method Based on Feature Enhancement and KNN. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14997. Springer, Cham. https://doi.org/10.1007/978-3-031-71464-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71464-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71463-4

  • Online ISBN: 978-3-031-71464-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics