Skip to main content

Mobile Crowdsourcing Task Assignment Algorithm Based on ConvNeXt and GRU

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14997))

  • 261 Accesses

Abstract

Task assignment is a crucial aspect of mobile crowdsourcing research. The focus is on allocating appropriate perceptual tasks based on task and worker characteristics to optimize perceptual quality. Tasks arrive dynamically in a crowdsourcing system, and the platform cannot assign all tasks at the beginning. This can lead to the task allocation process falling into a local optimal solution. To address the problem, this paper proposes a two-stage prediction algorithm that utilises historical spatio-temporal data of crowdsourcing services. Firstly, the temporal data is converted into image data through Markov Transition Field. Then, the task availability is transformed into a categorisation problem. In the first stage, a ConvNeXt-based network is used to predict the task availability. In the second stage, a GRU-based network is used to predict the task duration. This paper presents the results of several experiments that confirm the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben Said, A., Erradi, A., Neiat, A.G., Bouguettaya, A.: A deep learning spatiotemporal prediction framework for mobile crowdsourced services. Mob. Networks Appl. 24, 1120–1133 (2019)

    Article  Google Scholar 

  2. Cai, Z., Duan, Z., Li, W.: Exploiting multi-dimensional task diversity in distributed auctions for mobile crowdsensing. IEEE Trans. Mob. Comput. 20(8), 2576–2591 (2020)

    Article  Google Scholar 

  3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  4. Du, S., Li, T., Yang, Y., Horng, S.J.: Multivariate time series forecasting via attention-based encoder-decoder framework. Neurocomputing 388, 269–279 (2020)

    Article  Google Scholar 

  5. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  7. Kumar, V., Patra, S.K.: Feature engineering for machine learning and deep learning assisted wireless communication. In: Metaheuristics in machine learning: theory and applications, pp. 77–95. Springer (2021)

    Google Scholar 

  8. Li, C., Tang, G., Xue, X., Saeed, A., Hu, X.: Short-term wind speed interval prediction based on ensemble gru model. IEEE Trans. Sustainable energy 11(3), 1370–1380 (2019)

    Article  Google Scholar 

  9. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., Sai, A.M.V.V.: Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Trans. Veh. Technol. 70(1), 993–1007 (2021)

    Article  Google Scholar 

  10. Liu, Y., et al.: Social sensing: a new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 105(3), 512–530 (2015)

    Article  Google Scholar 

  11. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  12. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Shahid, F., Zameer, A., Muneeb, M.: Predictions for covid-19 with deep learning models of lstm, gru and bi-lstm. Chaos, Solitons Fractals 140, 110212 (2020)

    Article  MathSciNet  Google Scholar 

  15. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. arXiv preprint arXiv:1506.00327 (2015)

  16. Wei, X., Sun, B., Cui, J., Qiu, M.: Location-and-preference joint prediction for task assignment in spatial crowdsourcing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(3), 928–941 (2022)

    Article  Google Scholar 

  17. Zhang, R., Xie, Z., Yu, D., Liang, W., Cheng, X.: Digital twin-assisted federated learning service provisioning over mobile edge networks. IEEE Trans. Comput. (2023)

    Google Scholar 

  18. Zhao, Y., Zheng, K., Cui, Y., Su, H., Zhu, F., Zhou, X.: Predictive task assignment in spatial crowdsourcing: a data-driven approach. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 13–24. IEEE (2020)

    Google Scholar 

  19. Zhou, X., et al.: Decentralized p2p federated learning for privacy-preserving and resilient mobile robotic systems. IEEE Wirel. Commun. 30(2), 82–89 (2023)

    Article  Google Scholar 

  20. Zhou, X., et al.: Edge-enabled two-stage scheduling based on deep reinforcement learning for internet of everything. IEEE Internet Things J. 10(4), 3295–3304 (2022)

    Article  Google Scholar 

  21. Zhu, S., Cai, Z., Hu, H., Li, Y., Li, W.: zkcrowd: a hybrid blockchain-based crowdsourcing platform. IEEE Trans. Industr. Inf. 16(6), 4196–4205 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxian Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Z., Pan, Q., Gao, Z., Luan, P., Wei, K., Li, J. (2025). Mobile Crowdsourcing Task Assignment Algorithm Based on ConvNeXt and GRU. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14997. Springer, Cham. https://doi.org/10.1007/978-3-031-71464-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71464-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71463-4

  • Online ISBN: 978-3-031-71464-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics