Skip to main content

Federated Dynamic Graph Fusion Framework for Remaining Useful Life Prediction

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14998))

  • 228 Accesses

Abstract

In real scenarios, due to the limitation of data silos, it is difficult to perform collaborative training with sparse and heterogeneous data distributed in different factories. Besides, the complex operating conditions of equipment result in dynamic interactions among sensors, which diminishes the effectiveness of local models, and different sensor types and numbers between clients also hinder collaborative training. These problems are particularly significant in the remaining useful life (RUL) prediction task, which is essential for modern engineering to maintain high reliability. To overcome these challenges, we propose a Federated Dynamic Correlation-Aware (FDCA) framework, which generates global graph structure knowledge to enhance local model training and utilizes dynamic graphs to incorporate spatio-temporal features on the client side to improve prediction accuracy and robustness, maximizing the synergy between local data training and global knowledge inspiration. Extensive experiments conducted on four public sub-datasets show the advantages of our proposed FDCA over state-of-the-art baselines.

J. Wang and Q. Wang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    N-CMAPSS can be found at https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/.

References

  1. Arias Chao, M., Kulkarni, C., Goebel, K., Fink, O.: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data 6(1), 5 (2021)

    Article  Google Scholar 

  2. Chen, Z., Chen, D., Zhang, X., Yuan, Z., Cheng, X.: Learning graph structures with transformer for multivariate time-series anomaly detection in iot. IEEE Internet Things J. 9(12), 9179–9189 (2021)

    Article  Google Scholar 

  3. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)

    Google Scholar 

  4. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: A meta-learning approach. arXiv preprint arXiv:2002.07948 (2020)

  5. Guo, L., Yu, Y., Qian, M., Zhang, R., Gao, H., Cheng, Z.: Fedrul: a new federated learning method for edge-cloud collaboration based remaining useful life prediction of machines. IEEE/ASME Trans. Mechatron. 28(1), 350–359 (2022)

    Article  Google Scholar 

  6. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: Stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  7. Liao, L.: Discovering prognostic features using genetic programming in remaining useful life prediction. IEEE Trans. Industr. Electron. 61(5), 2464–2472 (2013)

    Article  Google Scholar 

  8. Lin, S., Lin, W., Wu, W., Zhao, F., Mo, R., Zhang, H.: Segrnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint arXiv:2308.11200 (2023)

  9. Liu, Y., et al.: Deep anomaly detection for time-series data in industrial iot: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 8(8), 6348–6358 (2020)

    Article  Google Scholar 

  10. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  11. Mo, Y., Wu, Q., Li, X., Huang, B.: Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. J. Intell. Manuf. 32(7), 1997–2006 (2021)

    Article  Google Scholar 

  12. Nie, Y., Nguyen, N.H., Sinthong, P., Kalagnanam, J.: A time series is worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730 (2022)

  13. Nunes, P., Santos, J., Rocha, E.: Challenges in predictive maintenance-a review. CIRP J. Manuf. Sci. Technol. 40, 53–67 (2023)

    Article  Google Scholar 

  14. Ren, L., Liu, Y., Huang, D., Huang, K., Yang, C.: Mctan: a novel multichannel temporal attention-based network for industrial health indicator prediction. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  15. Dinh, T., Tran, C., Nguyen, N.: Personalized federated learning with moreau envelopes. J. Adv. Neural Inform. Process. Syst. 33, 21394–21405 (2020)

    Google Scholar 

  16. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  17. Wang, J., Wen, G., Yang, S., Liu, Y.: Remaining useful life estimation in prognostics using deep bidirectional lstm neural network. In: 2018 Prognostics and System Health Management Conference (PHM-Chongqing), pp. 1037–1042. IEEE (2018)

    Google Scholar 

  18. Wei, Y., Wu, D., Terpenny, J.: Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism. Mech. Syst. Signal Process. 188, 110010 (2023)

    Article  Google Scholar 

  19. Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., Long, M.: Timesnet: temporal 2d-variation modeling for general time series analysis. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  20. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  21. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)

    Google Scholar 

  22. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 11121–11128 (2023)

    Google Scholar 

  23. Zhang, C., Lim, P., Qin, A.K., Tan, K.C.: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE transactions on neural networks and learning systems 28(10), 2306–2318 (2016)

    Article  Google Scholar 

  24. Zhang, Y., Yan, J.: Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  25. Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhang or Dongxiao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Wang, Q., Li, M., Zhang, X., Yu, D. (2025). Federated Dynamic Graph Fusion Framework for Remaining Useful Life Prediction. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14998. Springer, Cham. https://doi.org/10.1007/978-3-031-71467-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71467-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71466-5

  • Online ISBN: 978-3-031-71467-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics